
Use of Tabu Search in a Solver to Map

Complex Networks onto Emulab Testbeds

THESIS

Jason E. MacDonald, Captain, USAF

AFIT/GCE/ENG/07-07

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the United States Air Force, Department of Defense, or
the United States Government.

AFIT/GCE/ENG/07-07

Use of Tabu Search in a Solver to Map
Complex Networks onto Emulab Testbeds

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Computer Engineering

Jason E. MacDonald, B.S.E.E.

Captain, USAF

March 2007

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT/GCE/ENG/07-07

Abstract

The University of Utah’s solver for the testbed mapping problem, assign, uses

a simulated annealing metaheuristic algorithm to map a researcher’s experimental

network topology onto available testbed resources. This research modifies assign to

use tabu search to find near-optimal physical topology solutions to user experiments

consisting of random and scale-free complex networks. Complex networks often have

hundreds or thousands of nodes and are used to describe large complicated systems

ranging from genetics to the Internet. While simulated annealing arrives at solutions

almost exclusively by chance, tabu search incorporates the use of memory and other

techniques to guide the search towards good solutions. Both versions of assign are

compared to determine whether tabu search can produce equal or higher quality

solutions than simulated annealing in a shorter amount of time. It is assumed that

all testbed resources remain available, and that hardware faults or another competing

mapping process do not remove testbed resources while either version of assign is

executing. The results show that tabu search is able to produce a higher proportion

of valid solutions for 34 out of the 38 test networks than simulated annealing. For cases

where a valid solution was found, tabu search executes more quickly than simulated

annealing for scale-free networks and networks with less than 100 nodes. Simulated

annealing is able to produce equal or higher quality solutions for all test networks

when a valid solution was found.

iv

Acknowledgements

I am ever thankful to Dr. Bob Mills for his many roles of thesis advisor, life

counselor, and research motivator. He played them all well, and often simultaneously.

A few minutes of discussion with him would bring into focus hours or days of confusion.

I have never met anyone so versed in such a wide array of subjects, and I hope to get

the chance to explore some of the many topics we’ve spoken about. I am grateful for

his trust in my abilities, which was often greater than my own self-confidence.

I would like to thank my committee members Dr. Rusty Baldwin and Dr.

Barry Mullins for providing many insights and a deep appreciation for the inner

workings of computer networks. I would also like to thank Mr. Robert Ricci at

the University of Utah for taking the time to review and comment on my ideas for

modifying assign. I always felt more certain that what I was attempting was possible

after his reassurances.

I am deeply indebted to David and Myrna Montminy for helping me make it

through AFIT. Being out of school for seven years and changing degrees certainly did

not make navigating an already challenging curriculum any easier. David, thank you

for helping me through our classes and putting up with my dumb questions. Myrna,

thank you for being the best friend anyone could ever ask for. Our PF Chang dinners

and Starbuck coffee breaks were pivotal in reconstituting me to take on another day

at AFIT. I don’t know how I would’ve done without you guys. I wish the two of you

the best of luck in New Mexico.

Lastly, I would like to thank my mother for being my greatest inspiration. I

believe it was her strong work ethic and other traits instilled in me over the years

that enabled me to achieve as much as I did during graduate school.

Jason E. MacDonald

v

Table of Contents
Page

Abstract . iv

Acknowledgements . v

List of Figures . viii

List of Tables . x

List of Abbreviations . xii

I. Introduction . 1
1.1 Purpose and Goals . 4

1.2 Assumptions and Scope 6

1.3 Organization . 7

II. Background . 8

2.1 Complex Networks . 8

2.1.1 Random Networks 9
2.1.2 Small-World Networks 11

2.1.3 Scale-Free Networks 12
2.2 Emulation . 15

2.2.1 Growth of Network Simulation as a Research Tool 15
2.2.2 Overview of Network Emulation 18

2.2.3 University of Utah’s Emulab 19

2.3 Metaheuristic Algorithms 23

2.3.1 Simulated Annealing 25

2.3.2 Assign - Emulab’s Solver to the Testbed Mapping
Problem . 25

2.3.3 Improvements to Assign 28

2.3.4 Tabu Search . 31
2.4 Summary . 34

III. Research Methodology . 35

3.1 Problem Definition . 35
3.1.1 Goals and Hypothesis 36

3.1.2 Approach . 37

3.2 System Boundaries . 38

3.3 System Services . 41

vi

Page

3.4 Workload . 42
3.5 Performance Metrics . 44

3.6 Parameters . 46
3.6.1 System . 46

3.6.2 Workload . 48
3.7 Factors . 48

3.8 Evaluation Technique 49

3.9 Experimental Design . 50

3.10 Implementation . 51

3.10.1 Original Anneal.cc using SA Search Algorithm . 51

3.10.2 Modified Anneal.cc using TS Search Algorithm 53

3.11 Summary . 55

IV. Data Analysis . 56

4.1 Validation . 56
4.2 Vlink Multiplexing Issues 56

4.3 Analysis of Valid Solutions 60

4.4 Analysis of Execution Time and Solution Quality 65

4.4.1 Analysis of Execution Time 69

4.4.2 Analysis of Objective Function Score 71

4.5 Summary . 74

V. Conclusions . 75
5.1 Research Summary and Conclusions 75

5.2 Research Significance and Contributions 76

5.3 Future Work . 76

Appendix A. Makefile Used to Compile Assign Source Code 77

Appendix B. Virtual Topology and Testbed Resource Input Files . . . 80

B.1 Set of Available Testbed Resources (.ptop file) 80

B.2 SF Virtual Topologies (.top files) 82

Appendix C. Data . 89

Bibliography . 128

vii

List of Figures
Figure Page

2.1 Complex Networks Found in Society and Nature 10

2.2 Differences Between a Regular Lattice and a Random Graph . 11

2.3 Examples of a Random Graph. 11

2.4 Transition from Regular to Random Graph Using WS Model . 12

2.5 Differences Between Random and Scale-free Networks. 13

2.6 Exponential and Scale-free Network Attack Tolerance. 16

2.7 University of Utah Emulab Classic Testbed 19

2.8 Example Vnodes and Pnodes Descriptions. 22

2.9 Landscape of an Objective Function 25

2.10 Migrating Across Non-solution Space to a Lower Minima. . . . 28

3.1 Emulab System Architecture. 39

3.2 System Boundaries of Assign. 40

3.3 Diagram of the Synthetic Testbed. 43

3.4 Visualization of the 500-node SF Virtual Topology. 45

4.1 Diagram of the 10-node SF Physical Topology After Mapping. . 57

4.2 Three Examples of Vlink Multiplexing. 58

4.3 Valid Solutions for Networks With Less Than 100 Nodes. . . . 63

4.4 Valid Solutions for Networks With 100 Nodes and Greater. . . 64

4.5 Measured Execution Time by Search Algorithm and Virtual Topol-

ogy. 66

4.6 Measured Objective Function Score by Search Algorithm and

Virtual Topology. 66

4.7 Residual Plots for Simulated Annealing Execution Time. 67

4.8 Residual Plots for Simulated Annealing Objective Function Score. 67

4.9 Residual Plots for Tabu Search Execution Time. 68

4.10 Residual plots for Tabu Search Objective Function Score. . . . 68

viii

Figure Page

4.11 Confidence Interval Plot of Execution Time for All Virtual Topolo-

gies. 69

4.12 Confidence Interval Plots of Execution Time by Virtual Topology

Type. 70

4.13 Confidence Interval Plot of Execution Time for Virtual Topolo-

gies With Less Than 100 Nodes. 70

4.14 Confidence Interval Plot of Execution Time for Virtual Topolo-

gies With 100 Nodes and Greater. 71

4.15 Confidence Interval Plot of Objective Function Score for All Vir-

tual Topologies. 72

4.16 Confidence Interval Plots of Objective Function Score by Virtual

Topology Type. 72

4.17 Confidence Interval Plot of Objective Function Score for Virtual

Topologies With Less Than 100 Nodes. 73

4.18 Confidence Interval Plot of Objective Function Score for Virtual

Topologies With 100 Nodes and Greater. 73

ix

List of Tables

Table Page

2.1 Physical Resources Available in Emulab. 27

3.1 The Number of Gigabit Plinks Per PC Node. 44

3.2 Assign Factors and Levels. 48

3.3 Assign’s Hardware and Software Testing Environment. 49

3.4 Assign Runtime Options. 50

4.1 Nine SF Virtual Topologies Modified to Pass Assign Prechecks. 59

4.2 Valid Solutions Created for Random Virtual Topologies. 61

4.3 Valid Solutions Created for SF Virtual Topologies. 62

B.1 BRITE Parameters Used to Create the Virtual Topologies. . . 84

B.2 Modifications Made to BRITE SF Virtual Topologies. 86

B.3 Modifications Made to BRITE Random Virtual Topologies. . . 87

C.1 Data for 10-node Random Virtual Topology. 90

C.2 Data for 20-node Random Virtual Topology. 91

C.3 Data for 30-node Random Virtual Topology. 92

C.4 Data for 40-node Random Virtual Topology. 93

C.5 Data for 50-node Random Virtual Topology. 94

C.6 Data for 60-node Random Virtual Topology. 95

C.7 Data for 70-node Random Virtual Topology. 96

C.8 Data for 80-node Random Virtual Topology. 97

C.9 Data for 90-node Random Virtual Topology. 98

C.10 Data for 100-node Random Virtual Topology. 99

C.11 Data for 200-node Random Virtual Topology. 100

C.12 Data for 300-node Random Virtual Topology. 101

C.13 Data for 400-node Random Virtual Topology. 102

C.14 Data for 500-node Random Virtual Topology. 103

x

Table Page

C.15 Data for 600-node Random Virtual Topology. 104

C.16 Data for 700-node Random Virtual Topology. 105

C.17 Data for 800-node Random Virtual Topology. 106

C.18 Data for 900-node Random Virtual Topology. 107

C.19 Data for 1000-node Random Virtual Topology. 108

C.20 Data for 10-node Scale-free Virtual Topology. 109

C.21 Data for 20-node Scale-free Virtual Topology. 110

C.22 Data for 30-node Scale-free Virtual Topology. 111

C.23 Data for 40-node Scale-free Virtual Topology. 112

C.24 Data for 50-node Scale-free Virtual Topology. 113

C.25 Data for 60-node Scale-free Virtual Topology. 114

C.26 Data for 70-node Scale-free Virtual Topology. 115

C.27 Data for 80-node Scale-free Virtual Topology. 116

C.28 Data for 90-node Scale-free Virtual Topology. 117

C.29 Data for 100-node Scale-free Virtual Topology. 118

C.30 Data for 200-node Scale-free Virtual Topology. 119

C.31 Data for 300-node Scale-free Virtual Topology. 120

C.32 Data for 400-node Scale-free Virtual Topology. 121

C.33 Data for 500-node Scale-free Virtual Topology. 122

C.34 Data for 600-node Scale-free Virtual Topology. 123

C.35 Data for 700-node Scale-free Virtual Topology. 124

C.36 Data for 800-node Scale-free Virtual Topology. 125

C.37 Data for 900-node Scale-free Virtual Topology. 126

C.38 Data for 1000-node Scale-free Virtual Topology. 127

xi

List of Abbreviations

Abbreviation Page

Emulab Emulation Laboratory . 2

AFIT Air Force Institute of Technology 2

PCs Personal Computers . 2

GUI Graphical User Interface 3

NS2 Network Simulator 2 . 3

WWW World Wide Web . 9

SF Scale-free . 9

ER Erdos and Renyi . 9

WS Watts and Strogatz . 12

U.S. United States . 12

BA Barabasi and Albert . 13

CAT5 Category 5 . 18

CORE CyberOpeRations Emulator 20

vclass virtual equivalence class 22

RAM Random Access Memory 23

OS Operating System . 23

SA Simulated Annealing . 25

pclass physical equivalence class 29

LAN Local Area Network . 30

TS Tabu Search . 31

SUT System Under Test . 39

CUT Component Under Test 40

BRITE Boston Representative Internet Topology gEnerator 43

ANOVA Analysis of Variance . 65

xii

Use of Tabu Search in a Solver to Map

Complex Networks onto Emulab Testbeds

I. Introduction

Complex networks are presently a popular topic of study for researchers across

a wide range of seemingly unrelated disciplines. Behaviorial science, molecular

biology, medicine and computer science are just a few of the fields in which these

networks are under investigation. Networks are a pervasive phenomenon through-

out our world, and can be found in human societies, our natural surroundings and

even in technology. Whether it is a collection of biological cells connected by axons,

molecules connected by biochemical reactions, Hollywood actors associated by the

movies they have starred in, or people linked by social relationships, these are all ex-

amples of complex networks that share a common architecture and self-organization

characteristics. Discovery of the properties of a complex network in one field can lead

to breakthroughs and applications in many other branches of science. For instance, a

key development in genetics can have impacts on Internet security and terrorist social

networks [3, 4, 32].

Nodes in complex networks are made of many non-identical, diverse elements.

Links account for many different types of interactions between nodes [3]. Non-random

distribution of connectivity among nodes, associativity among nodes, node clustering

and evidence of a hierarchical structure are key trademarks of complex networks. The

number of nodes in a complex network is usually large, sometimes totaling hundreds,

thousands or even millions. The topology of complex networks can change over time,

as nodes are added and removed [28, 34].

Mathematical modeling, simulation and direct measurement are the three most

common methods for analyzing performance, ascertaining characteristics and pre-

dicting responses of networks. Direct measurement is the most straightforward of the

1

three, and involves taking measurements of the network in question. When the net-

work under test cannot be accessed or does not exist, analytic performance evaluation

and simulation make use of models. A drawback of models is they must be, or have

been, validated to ensure the model accurately represents the system’s behavior [2].

Emulation is a lesser known, but just as important member of the suite of per-

formance evaluation techniques. Emulation combines the use of real elements of the

network under test along with simulated or abstracted elements in the same experi-

ment. As a result, emulation can achieve a higher degree of realism than simulation

alone. A consequence of increased realism is that the experiment executes in real

time to allow simulated and real elements to communicate with each other. Another

disadvantage is the inability to completely repeat the series of events that occurred

in a given experiment due to the inclusion of real components in the experimental

network. Simulation is preferred if the experiment duration is limited to a fraction

of the necessary completion time or absolute repeatability is required. The number

of real and abstracted components selected for the experiment is dependent on the

researcher’s demands and available testbed resources [11, 12].

In the academic and research community, University of Utah’s Emulation Lab-

oratory (Emulab) testbed is in the forefront among network emulation testbeds. Em-

ulab has been in production use since April 2000, and as of January 2007 the Air

Force Institute of Technology (AFIT) and sixteen other universities have constructed

testbeds that use Emulab’s software environment. The University of Utah’s Emu-

lab testbed is composed of three smaller testbeds: a mobile wireless laboratory, a

fixed 802.11 wireless testbed and the Emulab Classic testbed. Emulab Classic is “a

time- and space-shared ‘cluster testbed’ whose main goals are to provide artifact-free

network emulation for arbitrary experiments, while making them as easy and quick

as simulation” [24]. Emulab Classic comprises a host of personal computers (PCs)

that communicate with each other by hardwired Fast Ethernet interfaces and network

switches. The testbed is space-shared because it can execute multiple experiments

simultaneously, whether it be multiple researchers each submitting a single experi-

2

ment or a single researcher running multiple instances of the same experiment. The

testbed is also time-shared because submitted experiments are “swapped out” after

a given amount of idle time, allowing other experiments to make use of the resources

originally assigned to the first experiment [24, 29].

In the Emulab environment, the term “virtual” refers to components in the

researcher’s experiment. Virtual can also refer to simulated resources in the testbed

environment. This thesis uses the first definition of virtual unless otherwise noted.

The researcher’s submitted topology is known as the virtual topology. Nodes and links

in the virtual topology are known as a vnodes and vlinks, respectively. The testbed

representation of the researcher’s experiment is known as the physical topology. Nodes

and links in the physical topology are known as a pnodes and plinks, respectively.

A researcher builds an experiment script using a JavaTM graphical user interface

(GUI) accessible on Emulab’s homepage or using the Network Simulator 2 (NS2) pro-

gram [13, 29]. NS2 is a popular open-source discrete event simulator widely used for

networking research. Once the experiment is submitted, Emulab’s software environ-

ment “maps” available testbed resources to the researcher’s virtual topology, using a

solver known as assign. Assign has five goals when it maps testbed resources to a

virtual topology [14, 24]:

1. Correctly assign vnodes and vlinks to available pnodes and plinks by ensuring

specified hardware, software and protocol configurations are met and no artifacts

are introduced into the physical topology.

2. Map vlinks to plinks in such a way that inter-switch bandwidth in the physical

topology is minimized.

3. Complete the mapping in such a way to maximize the number of experiments

that can be run simultaneously on the testbed.

4. Facilitate experiment scaling by minimizing the number of pnodes required for

each experiment. This is done by assigning multiple similarly-configured vnodes

to a single pnode.

3

5. Complete the assignment process in a minimal amount of time, much lower than

topology creation time to expedite experiment turnaround time.

1.1 Purpose and Goals

Communications infrastructure, networks in military combat performance sce-

narios [7], command and control electronic mail systems [16] and networks described

in network-centric warfare doctrine [6] are just a few examples of defense complex

networks. Changing or modifying these networks once deployed can be a laborious

operation, as user downtime can be difficult to obtain and migration of existing users

to a new infrastructure or process can be tedious and cumbersome. In addition,

critical communication networks must be returned to operational status within a mo-

ment’s notice in case of emergency. This causes project delays since downtime must

be renegotiated between operational and support communities. Emulation is one way

of identifying weaknesses and vulnerabilities in defense networks prior to their ex-

ploitation and without disruption of real-world operations. In this way, the ability to

protect critical communication channels in times of devastation and war is enhanced.

During normal operations, studying the performance of these networks can also lead

to increased reliability, availability and user confidence.

Mr. Mike Hibler, Mr. Robert Ricci and other key architects of Emulab state in

[14] that a primary challenge of emulation environments is scale. As studies into com-

plex networks increase, emulation testbeds will need to be able to support networks

with larger numbers of nodes. The initial version of the Emulab environment conser-

vatively mapped virtual components one-to-one onto their physical counterparts to

meet the first goal of mapping the virtual topology without experimental artifacts. It

is no longer sufficient to map vnodes and vlinks one-to-one onto testbed pnodes and

plinks. To prevent a large experiment from monopolizing an entire testbed and to fa-

cilitate study of networks with thousands and tens of thousands of nodes, multiplexing

more than one vnode or vlink onto a single pnode or plink must be supported [14,24].

4

Complete accuracy is not always required in many cases of academic research

and performance analysis. High fidelity evaluations are often inefficient and slow

down development time, and often the only the systems characteristics that need

to be modeled are the ones related to the research [2]. To support a greater de-

gree of multiplexing, later Emulab environments have relaxed the first goal of the

testbed mapping algorithm. A higher degree of multiplexing improves the efficiency

of mapped components. For example, vlinks rarely make use of their maximum allo-

cated bandwidth so grouping multiple vlinks wastes less bandwidth in the underlying

plink [14].

Mapping a thousand or ten thousand node virtual topology represents a chal-

lenge in Emulab. The fifth goal of the testbed mapping algorithm is to complete the

assignment process in a minimal amount of time. Due to the dynamic nature of the

Emulab testbed environment, multiple researchers may be attempting to submit dif-

ferent experiments simultaneously. If the mapping process on a given virtual topology

takes too much time to complete, some of the testbed resources that it chose may

no longer be available, forcing the algorithm to restart [14, 24]. As stated in [24],

“Locking experiment creation for hours while large experiments map is not a reason-

able solution to this problem.” This research is thus concerned with the problem of

creating high quality, feasible solutions for complex networks with thousands of nodes

in a minimum amount of time.

Solution quality is a measurement of how well the resultant physical topology

represents the intended test network and the amount of testbed resources used by

the physical topology (e.g., how well the experiment was “packed” onto the testbed).

Assign’s first goal of correctly mapping vnodes and vlinks onto testbed resources is

of primary importance. However, minimizing experiment instantiation time is more

important than saving a few testbed resources, especially if doing so causes mapping

time to extend from seconds to minutes or even hours. Observations in [14] note that

researchers spend many hours debugging virtual topologies submitted to Emulab.

5

Therefore, the time it takes to map, or remap, a virtual topology is an important

consideration.

Assign uses a simulated annealing metaheuristic algorithm to match testbed

resources to a user’s virtual topology. One of the ways to reduce the amount of

time it takes to instantiate a user experiment on an Emulab testbed is to select

another metaheuristic that is able to produce a physical topology specification in

less time than simulated annealing. Tabu Search is a metaheuristic that mimics the

concept of memory, as opposed to annealing, to solve difficult optimization problems.

Memory guides tabu search towards good solutions based on information collected

during the search [8, 10]. The goal of this research is to determine whether a tabu

search implementation of assign is superior to Emulab’s existing simulated annealing

implementation in terms of execution time and solution quality.

1.2 Assumptions and Scope

The process of mapping a researcher’s virtual topology to a physical testbed

topology has many different phases. The scope of this research is limited strictly to

the phase which incorporates the testbed mapping algorithm. The mapping algorithm

takes as its input two text files with the extensions .top and .ptop. The .top file is a

text file created after the virtual topology produced in the JavaTM GUI or NS2 script

is parsed into an intermediate format by the Emulab software environment. The .ptop

is a text file with available testbed resources for the experiment being submitted. The

assumptions for this research are:

• The virtual topology submitted through the JavaTM GUI or NS2 script has no

syntax errors and is successfully parsed into an intermediate .top file.

• The virtual topology submitted to the testbed mapping algorithm has not been

preprocessed in any way to reduce its size and complexity (e.g., graph coarsen-

ing).

6

• A solution in the form of a physical topology can be produced for the submitted

virtual topology from the set of available resources specified in the .ptop file,

including all special hardware and software requirements.

• The set of available testbed resources specified in the .ptop file does not change

while the testbed mapping algorithm is running due to another mapping process

allocating resources before the assign has completed. Only one instance of assign

is executing on the set of available of available testbed resources at any given

time.

• All testbed resources are operational, working correctly and will not succumb

to hardware, software or other faults that may cause the resource to become

unavailable.

• Only “cluster” resources from a testbed such as Emulab Classic or the AFIT

CORE make up the set of available testbed resources.

1.3 Organization

The remainder of this thesis is divided into four chapters. The next chapter re-

views theories surrounding complex networks, introduces the performance evaluation

technique of network emulation, and describes metaheuristic algorithms, specifically

the simulated annealing and tabu search algorithms. Chapter 3 outlines the research

methodology to include the boundaries of the problem, factors selected, performance

metrics and experimental design. Chapter 4 analyzes and interprets the data collected.

The last chapter concludes with a summary of the research conducted, discusses re-

search significance and contributions, and suggests areas for future research.

7

II. Background

This chapter is divided into three sections, each covering a main topic of inter-

est. The first portion presents key background information on past and present

theories surrounding complex networks. The second introduces the performance eval-

uation technique known as emulation, and gives an overview of the Emulab testbed

environment developed by the University of Utah. The final section contrasts clas-

sic iterative searches with metaheuristic search algorithms and outlines the salient

features of the simulated annealing and tabu search algorithms. Assign, Emulab’s

solver to the testbed mapping problem, is introduced and improvements to assign’s

performance are discussed.

2.1 Complex Networks

Complex networks are defined as networks with “a non-trivial topological struc-

ture” [34] that display certain unique characteristics. The key characteristics of com-

plex networks are [3, 28, 34]:

• Nodes in complex networks are made of many diverse elements. A complex

social network can be made up of many different types of people differing in

gender, race, and religion. Nodes in a complex biological network can be made

up of a wide array of diverse organisms.

• Links can account for many different types of interactions between nodes. In a

complex genetic network, links represent a large number of chemical interactions

between genes and proteins.

• Complex networks often display a non-uniform distribution of connectivity among

nodes. This distribution is due to associativity between nodes or the preference

of a large set of nodes to establish links with another, smaller set of nodes.

• Nodes in complex networks often group together to form clusters. These clusters

can also group together to form larger clusters, creating hierarchical structures.

8

• Complex networks usually have a large number of nodes. The number of nodes

can sometimes total in the hundreds, thousands, or even millions.

• The topology of complex networks changes over time. This concept of growth

is usually the result of nodes being added or removed from the network.

Complex networks are used to describe numerous systems found throughout na-

ture and society. The routing structure of the Internet is an example of a system that

can be represented as a complex network. The nodes of this network are the Internet’s

tier-1, tier-2 and tier-3 routers and the links are transmission lines (e.g., T-carrier 1

and Optical Carrier 3) that connect them. From a different perspective, the Inter-

net can be described as a complex network by treating webpages that make up the

World-Wide Web (WWW) as nodes, and edges as hyperlinks interconnecting them.

Complex networks are not confined solely to the domain of computer science. Person-

nel in a social organization and the relationships that connect them can be expressed

as a complex network. In the medical field, the collection of neurons in the brain

is a complex network [4, 28, 32]. Figure 2.1 highlights two additional examples. The

ecological web of Little Rock Lake is a hierarchical complex network of predator-prey

association. The New York State power grid is also a complex network of genera-

tors, substations, power lines and transformers. The three leading classifications of

complex networks are random, small-world and scale-free (SF) [28, 32, 34].

2.1.1 Random Networks. Prior to the late 1950’s, prevailing network theory

used geometrically regular graphs (e.g., lattices, chains, or grids) to model processes,

relationships, and physical phenomena. This application of simple network theory

focused on the nodes or individual network elements, thus investigation of the dy-

namics of the network as a whole went mostly ignored [28, 32]. In 1959, Paul Erdos

and Alfred Renyi introduced the idea of random graphs to represent complex net-

works. Figure 2.2 shows the differences between a regular lattice graph and a random

graph presented by Erdos and Renyi (ER). In the ER graph model, nodes are not

9

(a) (b)

Figure 2.1: (a) Food web of Little Rock Lake, Wisconsin. Nodes are functionally
distinct “trophic species” and the links show “who eats whom” in the lake.
(b) New York State electric power grid. Nodes are generators and substations repre-
sented by small bars. Links are transmission lines and transformers shown by lines
interconnecting the generators and substations. Line thickness indicates various volt-
age levels [28].

fully connected, rather links between neighboring nodes are established with a speci-

fied global probability [9].

Figure 2.3 shows how the graph connectivity varies with different probability

values. In an ER graph, the majority of nodes have the same number of links. It is rare

to find nodes that have significantly more or less links than the average, as the number

of links per node follows a Poisson or normal (bell-shaped) distribution, as shown in

Figure 2.5. The ER network model is very democratic, as each node has approximately

the same amount of impact to the overall topology of the network [4]. For the next

40 years, the ER random graph model remained the prominent theory to describe

complex networks and their topologies. This was because there were no competing

10

(a) (b)

Figure 2.2: (a) Graph based on a two-dimensional lattice network in which each
node is connected to its nearest neighbor.
(b) Graph based on the ER random model. Each pair of nodes are are connected
based on a global probability.

complex network theories that displayed the rigor of the ER model and no capability

to map and observe the topology of real-life large complex networks [3, 28, 32]. This

changed at the turn of century with the advent of super-computers.

2.1.2 Small-World Networks. In 1998, Duncan Watts and Steven Strogatz

found a relationship between geometrically regular graphs and graphs based on the

ER model. Their research yielded a model that transitions from a regular to random

graph by randomly reassigning links to different nodes with a given probability P .

The minimum value of P = 0 results in the original geometrically regular graph.

The maximum value of P = 1 gives a completely random topology, as described

(a) (b) (c) (d)

Figure 2.3: Four examples of a ten-node random graph. The probability that each
pair of nodes is connected for each of the cases is (a) 0 (b) 0.1 (c) 0.15 and (d) 0.25 [32].

11

Figure 2.4: The WS model describes how a regular lattice
graph transitions to a random graph by varying the probability
P from 0 to 1 [32].

by the ER model. As the value of P shifts through the bounds of 0 < P < 1, a

“small-world” graph is created. This small-world characteristic describes how in large

complex networks, a random pair of nodes are connected to each other through a

relatively short path. In social networks, this is sometimes referred to as “six degrees

of separation” [28, 32]. Figure 2.4 shows how the transition from a regular lattice to

a random graphs takes place using the Watts and Strogatz (WS) small-world graph

model.

2.1.3 Scale-Free Networks. Also in 1998, Albert-Laszlo Barabasi, Eric

Bonabeau, Hawoong Jeong and Reka Albert conducted an experiment to map a por-

tion of the WWW. They found that the number of hyperlinks pointing to webpages

was not evenly-distributed and did not follow the ER model as hypothesized, rather

there were a very few number of webpages that had far more hyperlinks pointing to

them than the average. The results of their experiment showed that 80 percent of

webpages had fewer than four hyperlinks, while less than 0.01 percent (designated

as “hubs”) had more than 1,000 [3, 4, 32, 36]. Figure 2.5 shows a case similar to the

WWW in which the United States (U.S.) airline system has a few major airports that

have a large number of flights to other airports compared to the average, contrasted

12

(a) (b)

Figure 2.5: (a) The U.S. highway system resembles a random network in which city
nodes are randomly connected to each other and all nodes have approximately the
same number of links. (b) In contrast, the U.S. airline system is a SF network. Major
airport nodes have many links while the majority of airport nodes only have a few
connections [4].

against the U.S. highway system which has a more uniformly distributed number of

interstate highways between major metropolitan cities.

The existence of nodes with connectivity magnitudes greater than average led

Barabasi to coin the phrase “scale-free,” due to the number of links per node following

a power law distribution (implying lack of scale) and self-similar fractal characteristics.

In SF networks, these hubs dramatically influence the way the overall network behaves

and operates [28, 34]. The probability P (k) that a given node in a SF network is

connected to k other nodes in the Barabasi and Albert (BA) SF graph model is

P (k) ∼ k−γ. (2.1)

13

BA SF networks display many different power-law coefficient γ values, however most

fall within the bounds of 2 < γ ≤ 3 [3, 4, 36].

The BA SF model incorporates the ideas of growth and preferential attachment

to further distinguish SF graphs from random graphs. In contrast to the ER model

which assumes the number of nodes in a complex topology is fixed, the BA model

incorporates the addition of nodes over time to better represent how a real network

expands with age. For example, webpages are constantly being added to the WWW

and new routers continually come online to connect to the physical topology of the

Internet. Preferential attachment captures the fact that the connectivity of nodes

in real networks is not uniform. There are many reasons why certain nodes are

preferred over others, including age, reliability, resource availability and location. A

newly created webpage will often link with a more well-known and established web

portal in order to gain visibility. A recently published paper or article will often prefer

to cite an older, reputable publication that has gained acceptance in the community,

rather than a new article that has just been printed. The probability that a node

will be chosen for attachment increases with its popularity, leading to the “rich get

richer” phenomenon. It is these two features of growth and preference that explain

why power-law degree distribution is evident in SF networks [3, 4].

Complex networks are present in many military and defense sectors. Many of

these networks are thought to be SF, including communication networks, networks

in military combat performance scenarios [7], command and control electronic mail

systems [16] and networks described in network-centric warfare doctrine [6]. The

reliability of SF networks becomes a major concern when operating in such criti-

cal functions. SF networks are very robust in situations where nodes are removed

randomly from the topology, such as accidental equipment failures in a large com-

munication network or inadvertent cell mutations in the human body as a result of

misfolded proteins because random removal of nodes will eliminate mainly nodes that

are not hubs due to the “inhomogeneous connectivity distribution” [1] of SF networks.

Targeted attacks on hub nodes, however, can have a crippling effect. It has been sug-

14

gested that eliminating as few as 5 to 15 percent of the hubs in a SF network can

cause significant disruptions [4].

The diameter of a network is defined as “the average length of the shortest paths

between any two nodes” [1]. The network diameter characterizes network performance

by measuring the length of the shortest path used by two nodes to communicate. A

smaller diameter indicates a shorter expected path length between any two nodes in

the network, resulting in better performance due to reduced latency. Figure 2.6 shows

how the performance of a SF network remains relatively unchanged after a random

attack, but a targeted attack that removes hub nodes quickly diminishes performance.

Exponential networks, conversely, degrade at the same rate after either type of attack.

Whether or not the physical topology of the Internet is a SF network is a subject

of much debate. Some claim that the physical layer of the Internet is indeed a SF

network and that such a topology represents an “Achilles Heel” [1,4]. In this scenario,

a coordinated attack can cause global Internet outages by disabling a small number

of key routers. Others argue that the amount of different properties of SF networks

is growing due to popularity in recent literature, but none of this literature provides

rigorous validation resulting in many contradictions and sensational claims regarding

SF networks [18]. No matter which SF network definition is applied to the physical

topology of the Internet, reports of the fragile nature of the Internet in the face of a

targeted attack are false [18]. Since factors such as design, evolution, functionality and

constraints which are ignored in the SF definition. At levels of network abstraction

higher than the physical layer of the Internet (i.e., the WWW or electronic mail), SF

models may be more appropriate [18].

2.2 Emulation

2.2.1 Growth of Network Simulation as a Research Tool. The use of com-

puter simulation to analyze and predict network performance is quickly becoming

widespread in commercial and academic communities. The easy availability of per-

sonal computers as research tools have made computer simulation the most common

15

Figure 2.6: The upper pane shows changes in average shortest path length due to
accidental and targeted node removal in SF and exponential networks. Both networks
contain 10,000 nodes and 20,000 links. Triangles correspond to the diameter of the
exponential network as nodes are randomly removed. Squares show the diameter of
the SF network when nodes are removed randomly. Diamonds show the response of
the exponential network and circles show the response of the SF network to intentional
attacks, when the highest connected nodes are removed. The lower left and lower right
panes show projected changes as a result of targeted attacks to the physical Internet
and WWW topologies, respectively. The responses of these networks correspond to
that of a SF topology. [1].

method of scientific investigation [22]. Simulation is prevalent in the telecommuni-

cation industry as a foundation to plan for network deployment and other decision

support systems [20]. There are 27 different simulation tools in widespread use to-

16

day [23]. Thus, there is not only a pervasive use of computer simulation tools to study

network behavior, but also a wide variety as well.

Of the many network simulation tools available, many are specialized, and all

display various strengths and weaknesses. Some of the more common simulation

software package weaknesses are:

1. The ability to only model specific classes of network configurations (e.g., wide-

area or local-area networks).

2. Lack of user-friendly interfaces.

3. Lack of ability to build custom user models.

4. Overly simple or conversely, overly complex simulation engines.

5. Invalid network models.

6. High cost.

All but a few of the available simulation packages are proprietary and meant

to operate in a standalone environment. The few that are interoperable are so with

only one other simulation tool and confined to only certain network configurations

and models [23]. Surveyed simulation tools cannot generally export user data in a

way that is compatible with other standalone simulation software tools, and therefore

cannot be used together seamlessly [21, 23]. Instead, a user must work to become

an expert in multiple simulation environments to validate results gained from one

simulation tool by using another. This is often the only alternative if an analytic

model does not exist for the network design being simulated, or if performance is

being considered for an analytic model outside the range of system characteristics

that make it tractable [25]. The consequence is the tendency of commercial engineers

and academic researchers to only use a single simulation software package, and thus

make decisions based on results from models that may be overly simplistic, excessively

complicated or otherwise biased or corrupt.

17

2.2.2 Overview of Network Emulation. Emulation is an alterative to the

well-known performance evaluation techniques of analytic modeling, simulation and

direct measurement of a real system [2]. Emulation gets the experimenter closer than

simulation to the responses of an experimental system without actually implementing

it. Where simulation makes use of software or other tools to mimic the responses of

an experimental system, emulation uses real system components as elements of the

experimental system to observe responses the implemented system would have to real-

life stimuli. Thus, emulation incorporates more realism into a model than simulation

and can be used as an additional method to validate simulation results [11, 12].

In the domain of computer networking research, network emulation testbeds en-

able researchers to partially implement their experimental network designs. Network

emulation is:

a hybrid approach that combines real elements of a deployed networked applica-
tion, such as end hosts and protocol implementations, with synthetic, simulated
or abstracted elements, such as network links, intermediate nodes and back-
ground traffic [12].

Network emulation testbeds have numerous PCs interconnected through hubs

or switches. These PCs, hubs and switches are actively configured by the testbed

system to emulate nodes and links in experimental network design topologies. Once

a network design is submitted, a mapping algorithm selects and configures available

resources to build and execute the experiment for the desired duration. Nodes that

make up the submitted topology are emulated by end-node PCs. Links are emulated

by the combination of intermediate PCs, network switches and Category 5 (CAT5)

network cables. Link characteristics and performance constraints, such as latency

and packet loss, are modeled by intermediate PCs that delay or prevent portions of

traffic from being passed from node to node [24]. In this way, testbed PCs represent

a few select real hosts of the experimental network and can be programmed to exe-

cute developmental applications and protocols. Networks links and other hosts are

synthetically represented by a blend of testbed resources [12].

18

Figure 2.7: Photograph of a portion of the 328 Emulab Clas-
sic rackmounted testbed computers at the University of Utah
(January 2007).

2.2.3 University of Utah’s Emulab. Emulab is a large network emulation

testbed located at the University of Utah. Emulab consists of three independent

testbeds that share their resources, meaning that components from all three can be

combined in a single experiment [29]:

Mobile Wireless Laboratory. The nodes in this testbed are static and mobile

wireless mote sensors. Portable motes are attached to remotely controlled robots

that can be moved throughout the facility to replicate mobile sensor conditions.

Fixed 802.11 Wireless Laboratory. This testbed is made up of PC nodes that use

802.11 a, b and g wireless network interfaces. The testbed PCs are dispersed

across various locations at the University of Utah testbed facility.

Emulab Classic. The original University of Utah testbed consisted of 168 rack-

mounted PCs of various hardware configurations. The latest version incorpo-

rates 328 PC nodes to handle the demands of additional users and larger virtual

topologies. The PCs in this “cluster” testbed are connected to each other di-

rectly with CAT5, or through one or multiple network switches.

19

AFIT’s CyberOpeRations Emulator (CORE) hardware layout is similar to the

Emulab Classic testbed. Thirty-five PC nodes are rackmounted and connected to

each other with hardwired Fast Ethernet network interfaces and a Cisco network

switch [13]. AFIT and sixteen other universities use the same software testbed envi-

ronment built and developed by the University of Utah for Emulab.

2.2.3.1 Mapping Algorithm Goals. A user “experiment” is the pri-

mary unit of workload for Emulab. Every action taken by Emulab supports user ex-

periments, whether by actively running an experiment, syntax checking user scripts,

mapping resources to virtual topologies, or monitoring experiment performance. A

researcher builds an experiment script using a JavaTM GUI accessible on Emulab’s

homepage or using the NS2 program [13,29]. The script is parsed to ensure there are

no errors and loaded into a database to await resource assignment. This database

also serves as a repository to “swap in” idle experiments that no longer have re-

sources assigned to them. If a pnode or other hardware fails, resource assignments

in this database are used to expedite recreating the experiment. Thus only vnodes

assigned to faulty hardware must be re-evaluated. Once the experiment is submitted,

Emulab’s software environment “maps” available testbed resources to the researcher’s

virtual topology, using a solver known as assign. Assign has five goals when it maps

testbed resources to a virtual topology [14, 24]:

1. Correctly assign vnodes and vlinks to available pnodes and plinks by ensuring

specified hardware, software and protocol configurations are met and no artifacts

are introduced into the physical topology.

2. Map vlinks to plinks in such a way that inter-switch bandwidth in the physical

topology is minimized.

3. Complete the mapping in such a way to maximize the number of experiments

that can be run simultaneously on the testbed.

20

4. Facilitate experiment scaling by minimizing the number of pnodes required for

each experiment. This is done by assigning multiple similarly-configured vnodes

to a single pnode.

5. Complete the assignment process in a minimal amount of time, much lower than

it takes a user to develop a virtual topology to expedite experiment creation

time.

2.2.3.2 Node Types. A pnode in an experiment can be a fully interac-

tive PC end-node, a router, a delay node to traffic-shape a link, or a host for multiple

simulated vnodes [12]. A type system in the Emulab environment determines whether

or not a pnode is a potential match for a vnode. Every vnode is given a type and

every pnode is given a list of vnode types it can support. Pnodes are also given the

number of vnodes they can simultaneously support for each type. Only vnodes of the

same type can be mapped to the same pnode. For example, Figure 2.8 shows how

any of the four pnodes can support vnodes delay1, delay2 and node1. Vnode node1

in Figure 2.8 (a) is of type pc. Vnodes delay1 and delay2 are both of type delay.

All four pnodes in Figure 2.8 (b) are capable of hosting vnode types pc and delay.

Additionally, vnodes delay1 and delay2 can be placed on the same pnode for a more

efficient mapping. Only pnodes pc1 and pc2 are candidates for vnode node2, however,

due to the request for an 850Mhz processor. A complete description of vnode, pnode,

vlink and plink syntax in .top and .ptop files is provided in Appendix B [24].

2.2.3.3 Link Types. The Emulab environment supports four types of

plinks that can be mapped to vlinks: intra-node links, direct links, intra-switch links

and inter-switch links. Intra-node links are links between vnodes mapped to the same

pnode. Intra-node links are physical from the perspective that they consume pnode

memory resources when in use, but do not require additional hardware. Direct links

are links between two pnode network interfaces that do not pass through a network

switch. Intra-switch links are links between two pnodes that cross only one network

21

(a) (b)

Figure 2.8: (a) Example vnode descriptions from an Emulab .top file. Vnode
descriptions are in the format node <node> <type> [<desires>], where <node> is
the vnode string identifier and <type> is the string identifier for the vnode type.
(b) Example pnode descriptions from an Emulab .ptop file. Pnode descriptions are
in the format node <node> <type> [<desires>], where <node> is the pnode string
identifier and <types> is a space-separated list of <type>:<number>. <type> is the
string identifier for the vnode types this pnode can host and <number> is the number
of vnodes of the particular type this pnode can host. A complete description of vnode,
pnode, vlink and plink syntax in .top and .ptop files is provided in Appendix B [24].

switch. Inter-switch links are links between two pnodes that traverse more than one

network switch [24].

Efficiently mapping vlinks to plinks supports assign’s second and third goals,

which are mutually inclusive. Restricting the use of limited testbed resources in-

creases the probability of successfully mapping additional experiments while other

experiments are running. Network switch nodes and inter-switch bandwidth are two

examples of limited testbed resources. Even if an additional experiment successfully

mapped its vnodes to pnodes, a poor vlink to plink mapping can oversubscribe inter-

switch bandwidth. Oversubscription can create errors and artifacts in experiments

that are not able to access the required amount of bandwidth [14, 24].

2.2.3.4 Virtual Equivalence Classes. Users are less concerned about

selecting pnodes with newer hardware and more concerned that a set of vnodes are

equivalent [24]. A virtual equivalence class (vclass) allows users to specify that all

members of a vnode set be of the same type. For example, if a user wanted to create

a vclass for a group of clients and another vclass for a group of servers. Vclasses are

classified as hard or soft. Hard vclasses must be satisfied and violate fundamental

constraints if broken. Breaking constraints for a hard vclass results in an infeasible

configuration (discussed in Section 2.3.2.2). Soft vclasses can be broken by assign

22

in the search for a better configuration, but penalties are assessed by the objective

function for doing so [24].

2.2.3.5 Features and Desires. Features are hardware and software re-

sources offered by pnodes. Processor speed, hard disk space, Random Access Memory

(RAM) size are examples of pnode hardware features. A pnode’s preloaded operating

system (OS) is an example of a software feature. Mapping a vnode to a pnode with

the correct OS already loaded will eliminate the time required to install the requested

OS. Desires are requests for features specified by the user. Good mapping solutions

will mate features and desires to the greatest extent possible in user experiments.

Unfulfilled desires and wasted features penalize solutions by increasing the cost of the

mapping algorithm’s objective function (see Section 2.3.2.1) [24].

Features and desires are weighted so that penalties are not equal when summed

together in assign’s objective function. Some resources are more limited than others,

and scarcer resources carry a greater weight. For instance, it may be desirable for

assign to choose a pnode that has a higher processor speed than required, over one

with an extra Fast Ethernet connection. In this way, the penalty for wasted processing

resources is less than that for an unused fast ethernet connection. In another case,

wasting a fast ethernet connection may be preferable to choosing a pnode with a

gigabit ethernet connection that is not specifically requested [24].

2.3 Metaheuristic Algorithms

Metaheuristics are a general class of algorithms for solving combinatorial opti-

mization problems and problems that do not have an efficient domain-specific algo-

rithm. The goal of combinatorial optimization is to maximize or minimize an objective

or cost function to yield the best solution [35]. Throughout this thesis, the goal will

be to minimize the objective function unless otherwise stated. Difficult optimization

problems can be found in many fields, such as telecommunications, logistics, financial

planning, transportation and mass production [10]. The network testbed mapping

23

problem is a difficult optimization problem and is known to be NP-hard when re-

casted as the traveling salesman problem [24]. Two widely used metaheuristics to

solve difficult optimization problems are simulated annealing and tabu search [8].

Classic iterative or local search algorithms start from an initial configuration

that is either chosen or randomly selected. The configuration is then modified in an

attempt to improve the underlying objective function. Iterating from one configura-

tion to another is known as a “move”. The new resulting configuration is referred to

as a “neighbor” solution. The objective functions of the initial and new configurations

are compared, and the new solution is accepted if an improvement is achieved. Oth-

erwise, the new solution is discarded and the search algorithm returns to the previous

configuration. The algorithm terminates when attempts to modify the configuration

fail to improve the objective function [8, 10].

Classic iterative algorithms often get “stuck” in local minima. Figure 2.9 il-

lustrates this condition where c0 represents the initial configuration. A local search

algorithm will accept the next configuration c1 as this configuration lowers the score

of the objective function. The local search algorithm will continue to accept all config-

urations c2...cn as these configurations also continue to lower the objective function.

However, c’n will be rejected as this configuration increases the cost of the function.

The local search will terminate, never finding a better solution. Most importantly,

the algorithm will never explore the global optima c∗ [8, 10].

Metaheuristics differ from local search algorithms in that they have a much

better chance of locating the global optima in objective functions. Metaheuristics au-

thorize increases (degradations) in the objective function to escape local minima and

explore other “valleys”. In this way, configuration c’n can be accepted in Figure 2.9

and the algorithm has the potential to locate c∗, the global optima of the objective

function. Mechanisms are put in place to counter authorized increases and ensure the

search algorithm does not diverge [8].

24

Figure 2.9: Landscape of an objective function of a difficult
optimization problem. Different configurations are represented
by c designators. The desired configuration is c∗ that minimizes
the objective function. [8].

2.3.1 Simulated Annealing. Simulated Annealing (SA) is a metaheuristic

that mimics annealing, a slow cooling technique used by metallurgists to reduce defects

and produce high-quality materials. In SA, a random initial configuration is chosen

and neighbor configurations are selected at random to improve the objective function.

A temperature parameter is used to determine whether or not increases in the objec-

tive function should be accepted. At high temperatures, nearly all configurations are

accepted, allowing the algorithm to traverse “uphill” configurations and break out of

local minima. As the temperature lowers, tighter restrictions are placed on the set

of allowable configurations, resulting in fewer accepted configurations until the algo-

rithm converges onto a final solution. SA is known for its flexibility and adaptability

to a wide range of difficult optimizations problems. Management of the temperature

cooling schedule can be difficult, but is crucial for a successful implementation [8,24].

2.3.2 Assign - Emulab’s Solver to the Testbed Mapping Problem. The net-

work testbed mapping problem is defined as “the problem of selecting hardware to

instantiate network experiments” [24]. The Emulab architects chose SA as the search

algorithm because of its adaptability to a wide range of optimization problems. Unlike

a typical SA search algorithm that starts with a random configuration, assign starts

its SA algorithm with an empty one. Assign creates new configurations by changing

25

vnode assignments one at a time. Unassigned vnodes are given priority and mapped

first. Once all vnodes are assigned, a randomly chosen vnode is remapped to create

a new configuration. The objective function is used to score each new configuration.

Violations, a concept unique to assign, are also summed for each new configuration.

The configuration with the lowest score and lowest number of violations is retained

as the best solution [24, 30].

2.3.2.1 Objective Function. Assign’s objective function gauges the

quality of each configuration. Configurations are scored according to the number and

types of pnodes and plinks used in the physical topology. Scoring is not a trivial func-

tion, due to the complexity of features, desires, many-to-one relationships (mapping

multiple vnodes to a pnode) and one-to-many relationships (a single vlink can span

many plinks). A scoring system tallies the cost of wasted features, unfulfilled desires,

soft vclass penalties and links for each vnode to pnode assignment based on the ob-

jective function. A cost for the number of pclasses used is also included. Pclasses

are discussed in Section 2.3.3.1. An unfulfilled desire with a score greater than one

results in a violation.

Table 2.1 shows the pnodes and plinks scores used in the objective function.

Intra-node links are used first if possible, since their cost is the lowest. Inter-switch

links have a cost much higher than the other links since they are one of the key

resources to be conserved. Although Table 2.1 shows no penalty for the use of an

intra-node link, this has been updated [11] since large virtual topologies can reach the

upper limit on the number and capacity of vlinks that can be supported in pnodes.

Scoring an entire configuration is not trivial and its complexity is O(n + l), where

n is the number of nodes in the configuration and l is the number of links. The

scoring function needs to be computed quickly, due to the large number of times it is

conducted in a single mapping. Updating the score incrementally each time a node

is added, removed or reassigned lowers the computation time considerably to O(ln),

where ln is the number of links of the modified node [24, 30].

26

Table 2.1: Types of physical resources available in
Emulab along with their their cost to assign’s objec-
tive function [24].

Physical Resource Cost
Intra-node Link 0.00
Direct Link 0.01
Intra-switch Link 0.02
Inter-switch Link 0.20
Physical Node 0.20
Switch 0.50
pclass 0.50

2.3.2.2 Violations. A high temperature means assign can consider

configurations of lesser quality to escape local minima. Although these configurations

are of lesser quality, they still represent valid physical topology solutions that ful-

fill user desires and constraints. A violation, on the other hand, are user desires or

constraints that are not fulfilled by a given configuration. These configurations are

considered “infeasible.” Violations include, but are not limited to, oversubscribing

inter-switch bandwidth, unfulfilled user desires, hard vclass penalties and unassigned

vnodes. Two types of infeasible configurations are ones that lead to valid configura-

tions and ones that do not. An example of an infeasible configuration that does not

lead to valid solution space includes assigning a vnode with four vlinks to a pnode

that supports only three vlinks. No matter how the rest of the virtual topology is

remapped, this assignment always leads to an invalid solution. Exploration of these

infeasible configurations is wasteful and inefficient. To prevent this, assign creates a

list of valid pnode assignments for each vnode a priori [24].

Violations allow assign to consider infeasible configurations that lead to valid

solution space as an additional method to escape local minima. Figure 2.10 shows

an example of an infeasible configuration that leads to a lower minima. The left

pane shows a locally optimum configuration. Pnodes are represented by circles. The

upper left box shows a single pnode connected to a switch. The lower left box depicts a

group of three pnodes all connected to each other via another network switch. Pnodes

27

Figure 2.10: A situation in which traversing non-solution
space to allows the configuration to migrate to a lower minima.
Pnodes are represented by circles and vnodes are represented
by capital letters. A mapped pnode is a grayed circle labeled
with the vnode identifier. Pnodes that are connected to same
switch are grouped together in a square. A pnode that commu-
nicates from one square to a pnode in another square must use
an inter-switch link [24].

B, C and D communicate with pnode A through an inter-switch link. If the inter-

switch link is saturated and cannot accommodate additional vlinks, the right pane

represents an infeasible solution. However, the right-pane is a required intermediate

configuration to reach a lower minima, in which all four pnodes reside in the upper

box and communicate to each other with only intra-switch links [24, 30].

2.3.3 Improvements to Assign. Assign has been in use since January 2000

and has undergone many refinements to improve mapping performance. Physical

equivalence classes and virtual graph coarsening have reduced the search space assign

needs to explore, decreasing runtime considerably [14, 24]. Feedback-directed auto-

adaptation of simulated resources alerts the Emulab environment that a pnode in the

testbed network is overloaded with too many vnodes and the physical topology may

no longer be valid [11].

28

2.3.3.1 Physical Equivalence Classes. Testbed facilities will typically

have large sets of nodes with identical hardware. Remapping vnodes to a pnode with

identical hardware often results in a configuration with the same objective function

score and the same number of violations. Grouping pnodes together in a physical

equivalence class (pclass) prevents assign from exploring identical configurations and

dramatically reduces the search space. For a set of pnodes to be equivalent, they must

have “identical types and features” and there must exist “a bijection from the links

of one node to the links of the other that preserves destination and bandwidth” [24].

Without pclasses, the branching factor of assign is O(v · p), where v is the number

of nodes in the virtual topology and p is the number of PCs in the testbed. In the

2003 version of the Emulab testbed, p was reduced from 168 testbed PCs to only

4 pclasses. When pclasses are enabled, assign chooses a pclass for assignment to a

vnode, rather than a single pnode.

The effect pclasses have on reducing the search space breaks down when vnodes

are multiplexed onto pnodes. A pnode with one or more vnodes is no longer equivalent

to the rest of the empty pnodes in its pclass. Therefore, it must be removed to

form its own pclass. Assign attempts to mitigate this by dynamically computing

pclasses during the mapping process. Unfortunately, results thus far have been “close

to not having physical equivalence classes at all” [11]. This is problematic because

complex virtual networks leverage vnode multiplexing so as not to monopolize testbed

resources. It is these large networks that stand to gain the greatest runtime reduction

offered by pclasses [11, 24].

2.3.3.2 Coarsening the Virtual Graph. The next attempt to reduce

assign’s runtime focused on the virtual, as opposed to the physical topology. A key

observation is that in good solutions, two adjacent vnodes have a high probability

of being mapped to the same pnode when vnode multiplexing is used [14]. The

goal, then, is to find vnodes in the user’s virtual topology that map to the same

pnode. This is accomplished by executing two algorithms prior to running assign on

29

the virtual topology. The first algorithm combines leaf nodes belonging to a Local

Area Network (LAN) or similar network cluster into a single composite vnode. In

a SF network, this is akin to combining a hub node and all connected nodes into

one vnode. The second algorithm uses the METIS [17] graph partitioner to further

combine vnodes produced by the first algorithm. METIS partitions the revised virtual

topology in such a way that the average partition will fit in the pnode (pclass) with

the least amount of resources. These partitions are then combined once more to form

vnodes, producing the final virtual topology that is fed into assign. The attributes of

the vnode “conglomerates” are a summary of the properties of the original vnodes.

For instance, the memory requirements of a vnode conglomerate is a total of all the

memory requirements of the original vnodes [14].

METIS is used because it has a much lower execution time than assign. It is

faster because it ignores the complexity of matching vnode desires to pnode features.

This can produce an outcome known as “fragmentation” in which the preprocessing

algorithms create conglomerate vnodes that do not pack into pnodes as efficiently as

they would if the virtual topology was mapped directly by assign. It can also create

a second situation where no pnodes can handle the resource demands of the conglom-

erate vnodes. By carefully tuning the target size of the vnode conglomerate, [14] has

lessened the impact of fragmentation. The worst fragmentation noted only increased

testbed resources usage by 13 percent, an acceptable tradeoff considering a factor

of 14 speedup in mapping 100 nodes and a factor of 28 when mapping 1000 nodes.

The technique of automatically adapting the vnode to pnode packing ratio based on

feedback was developed to combat the overloaded pnode problem [11,14].

2.3.3.3 Feedback-Directed Auto-Adaptation of Simulated Resources.

Poor mapping can result in simulated nodes not being able to keep up when com-

municating with real nodes. Often this is due to an “overloaded” pnode that does

not have enough resources to meet the demands of all the vnodes mapped to it. Au-

tomatically optimizing the number of vnodes that can fit into a pnode accomplishes

30

two goals. The first is finding the best balance between efficiently mapping as many

experiments to the testbed as possible and ensuring all vnodes, simulated and real,

can keep up with each other in real time. The second is keeping user intervention to

a minimum, allowing researchers to focus on their experiments instead of the Emulab

platform running those experiments [11, 14].

A baseline must first be established that determines how many vnodes in a

particular experiment can fit into testbed pnodes. This is accomplished by having

the user execute a manual run, if the virtual topology is small. If the virtual topology

is large and complex, a feedback-directed adaptation routine automatically determines

the optimum packing factor. If a pnode overload is detected during an experiment,

the the faulty pnode is remapped with a more conservative vnode packing factor based

on feedback data collected [11, 14].

2.3.4 Tabu Search. Tabu Search (TS) is a metaheuristic first introduced

by Fred Glover in 1986. TS is a local search algorithm, similar to SA, that iterates

from one neighbor configuration to another until the stopping criteria is reached. In

contrast to SA, TS mimics the concept of memory, as opposed to annealing, to solve

difficult optimization problems. Memory guides TS towards good solutions based on

information collected during the search. Memory is applied in TS in two parts, short-

term and long-term. Short-term memory is implemented using a tabu list. Long-term

memory can be implemented in many ways. Two popular methods are preventing the

exploration of the same configuration repeatedly and forcing the visitation of solution

space that has not been explored in a long period of time [8, 10].

Original incarnations of TS committed entire solutions to memory. For prob-

lems with large configurations, such as assign’s mapping of complex networks, storing

thousands of sets of virtual topology assignments causes significant growth in the

mapping computer’s RAM requirements. Additionally, it is time consuming to parse

quickly through the data structure containing these configurations. Even using hash-

ing tables to reduce storage demands and quickly locate configurations in RAM, space

31

requirements can still be high. Later versions of TS streamlined memory needs by

storing only the moves that led to given configurations in memory, rather than the

entire configurations themselves [8, 10].

2.3.4.1 Candidate List. SA uses random selection to iterate from

one configuration to the next. In this respect, SA only considers only one move,

the random selection, to create the next new configuration. TS attempts to intelli-

gently select the next move by first evaluating numerous neighborhood configurations.

The one most likely to improve the objective function that is not tabu (explained in

Section 2.3.4.2) is selected. In this way, the search is directed towards high quality

solution space. The structure used to rank order future moves is known as the candi-

date list. To accelerate the time it takes to locate a potential move, only a subset of

all possible future moves are included in the candidate list [8].

2.3.4.2 Tabu List. The tabu list is the chief component of TS. The

tabu list contains a list of moves that, as a result of recent past moves, should not

be chosen. The purpose is to prevent recent configurations from being revisited. If

a move just selected changes to a new configuration, the reverse of that move should

not be permitted because the configuration will return to its original state. This

creates a situation in which very few unique solutions are found because the search

has explored only a small subset of possible configurations. To prevent this, the next

time a move is chosen from the candidate list, it is first compared against the tabu

list to see if it is allowed [8, 10].

2.3.4.3 Tabu List Length. The tabu list length corresponds to the

number of forbidden moves for the current iteration. Referring to the objective func-

tion landscape shown in Figure 2.9, the greater the number of tabu moves (longer

list length), the more likely the search will escape the local minima valleys. This is

known as diversification. Diversification stimulates the search to visit new regions

of solution space and creates configurations that vary greatly from each other. Too

32

much diversification can cause the search to miss better local minima, possibly even

the global optimum, by skipping completely over valleys. Intensification is a way to

reverse this effect. Intensification occurs when the list length is short, enabling the

search to more thoroughly probe the current valley. Intensification exploits the fact

that high quality solutions often share the same attributes and is used to locate the

best configuration in a region of good solution space [8, 10].

The list length should not be too long, otherwise all possible moves may be

excluded. Leaving only one or two legal moves per iteration may also not be desired,

since the search is more heavily influenced by the few available moves rather than

the objective function. Aspiration is the allowance of a tabu move if it improves

the objective function. Aspiration can be used to counter the impact of a long list

length. It is important to point out that aspiration should never be used to compel a

certain move to be taken, rather simply make the tabu move available. The objective

function should be used to determine whether or not the move is chosen. In addition

to being too long, the list length should also not be too short or cycles may appear.

Cycles occur when recent solutions are constantly revisited, the event the tabu list is

designed to prevent [8, 10].

The list length is a difficult parameter to set, but crucial to the good perfor-

mance of TS. A static list length will result in poor performance due to the fact that

the optimal length is closely tied to characteristics of the current problem. It can be-

come cumbersome to re-evaluate the best list length for each new problem instance.

Varying the list length throughout the search alleviates this problem by intensifying

or diversifying the focus for certain amounts of time. Two popular methods of varying

the tabu list are randomly and reactively. Reactive TS bases the list length on feed-

back gained during the search [5]. Robust TS randomly varies the list length between

a minimum and maximum length parameter [8].

2.3.4.4 Long-term Memory. Diversification is often not enough to

ensure TS will explore all regions of the solution space. If some regions are left

33

unvisited, then the global optimum can be missed. Long-term memory is used to

coerce the search into solution space that has not been investigated. One way of

pushing the search into new solution space is by preventing the same movement from

taking place repeatedly. Long-term memory facilitates this by maintaining statistics

on moves taken throughout the search. Moves often selected are penalized, typically

with a weight proportional to their frequency. Another method takes the opposite

approach, by forcing a move that has not been used in a long period of time, regardless

of the impact to the objective function. This approach forcefully vaults the search

out of the valley it was exploring into another region of solution space [8].

2.4 Summary

This chapter provides background information on complex networks, the net-

work performance evaluation technique of emulation, SA and TS metaheuristics.

Chapter 3 describes the research methodology to compare the performance of assign

using a SA search algorithm with a search algorithm based on TS.

34

III. Research Methodology

This chapter outlines the research methodology to compare the performance of

assign using a SA search algorithm with a search algorithm based on TS. A

systematic approach is used to analyze the performance of both search algorithms.

The problem definition and experimental goals are clearly defined following this in-

troduction. Rationale and description of the evaluation technique, factors selected,

performance metrics, experimental design and workload is also provided. Statistical

analysis of the data collected is presented in Chapter 4.

3.1 Problem Definition

The principal aim of Emulab is to provide a network emulation testbed for

researchers. This objective has many competing constraints that must be realized.

A useful network emulation testbed would rapidly create and deploy high fidelity,

reliable experiments that produce trustworthy results. Another concern is the trans-

parency of the testbed with regards to the OS and applications under test. The

testbed management system must not interfere with a running experiment to better

recreate real-world situations. Scalability permits experiment of complex networks

and other large virtual topologies [14]. Simulation has achieved widespread accep-

tance in academic and research communities by enabling users to rapidly deploy and

analyze experimental networks [20]. Emulab strives to equal the ease-of-use and rapid

experiment deployment that has made simulation popular, coupled with the realism

offered by emulation [29].

There are a number of requirements that must be met to rapidly deploy virtual

topologies onto an Emulab testbed. The time required for a user to navigate the

Emulab webpage GUI and create a virtual topology, how fast assign can find a worthy

solution, and how long it takes testbed PCs to load custom OS images are just a few of

the considerations that must be taken into account to quickly construct representative

physical topologies. Developing quality solutions for complex virtual topologies with

thousands of nodes in a minimum amount of time remains a challenge for assign.

35

Many improvements have been made thus far, as the original Emulab could only

instantiate 100-node experiments while the current version reliably maps experiments

up to 2,000 nodes in approximately three to four minutes [14, 24].

This research is concerned with the problem of creating high quality, feasible so-

lutions for complex networks with thousands of nodes in a minimum amount of time.

‘Quality’ refers to the score of the objective function, a lower score indicating a more

optimal solution. Higher quality solutions make more efficient use of testbed resources

allowing scalability of experiments and more simultaneous users. ‘Quality’ also refers

to violation count, as feasible physical topology solutions have zero violations. ‘Mini-

mum’ refers to the amount of time required by assign to locate a feasible solution for a

virtual topology. The time required to locate a feasible solution should be minimized

to the greatest extent possible. The time required to instantiate a user experiment

on an Emulab testbed is of greater importance than objective function score. A map-

ping time on the order of hours to find the lowest possible objective function score is

unacceptable since availability of testbed resources can change within minutes. As-

sign would then be forced to restart until a solution was reached where all testbed

resources were available [24]. The worst case mapping time should be much smaller

than the time it takes for a PC node to reboot. Other than loading custom disk

images, node rebooting dominates experiment creation time [33].

3.1.1 Goals and Hypothesis. Metaheuristic algorithm runtime can be re-

duced by reducing the search space or branching factor. The branching factor in

assign is O(v · p), where v is the number of nodes in the virtual topology and p is

the number of PC nodes in the testbed. Coarsening the virtual topology using a

graph partitioner such as METIS effectively reduces the value of v [14]. Pclasses are

a useful method to reduce p, except in large topologies that require vnode multiplex-

ing. In these cases, a partially filled pnode is no longer equivalent to the rest of the

pnodes in the pclass. A partially filled pnode must therefore be removed to form its

36

own pclass. This occurs throughout the mapping process mimicking the effect of not

having pclasses at all [11].

Another way to reduce the runtime of a metaheuristic algorithm is to improve

the search technique. SA relies on a large number of iterations to produce a good

quality solution, as the algorithm is guided almost exclusively by chance. Poor quality

solutions must be traversed before a smaller subset of good solutions is found. TS

incorporates the use of memory more quickly to direct the search towards higher

quality solution spaces [8].

The goal of this research is to determine whether a TS implementation of assign

is superior to Emulab’s existing SA implementation with respect to execution time and

solution quality. The application of short-term memory prevents TS from revisiting

solutions in the same manner as SA. Long-term memory ensures TS will explore a

larger region of solution space than SA, giving TS a better opportunity to locate

lower minima. It is expected that a TS implementation of assign will locate physical

topology solutions in less time than Emulab’s existing version of assign when mapping

identical virtual topologies. It is further expected that the number of violations and

the objective score of TS solutions will be equal to or lower than SA solutions for the

same virtual topologies.

3.1.2 Approach. To achieve the research goal, the violation count, objective

score and execution time produced by the original version of assign is compared with

a version modified to use the TS algorithm. A workload composed of 38 virtual

topologies and one set of available testbed resources is submitted to the original SA

and TS versions of assign. Each version of assign produces a solution consisting of a

physical topology from the provided virtual topology and one of the sets of testbed

resources. Both versions of assign are implemented in the C programming language

and compiled using the test environment specified in Table 3.3 and the makefile listed

in Appendix A. Assign is launched from the command line in a console window

within the K Desktop Environment, on a Dell laptop computer running the FreeBSD

37

OS. The virtual topologies are specified in a text file with a .top extension. Similarly,

the available testbed resources are denoted in a text file with a .ptop extension. The

command line arguments are the .top file, the .ptop file and runtime options shown

in Table 3.4. The .top and .ptop files used in testing are listed in Appendix B. Upon

completion, assign outputs the physical topology, violation count, objective function

score and execution time to the console window. Objective function score results from

the SA and TS algorithms are compared for each of the virtual topologies to determine

which was lower, indicating a higher quality solution. Runtimes for both algorithms

are also recorded to determine which had a lower execution time. If violations are

present in a physical topology, assign is considered to be unable to reach a valid

solution for the given virtual topology. Objective function score and execution results

are not compared for these cases.

The range of complex networks under study is constrained to 38 SF and random

networks ranging from 10 to 1000 nodes. These complex networks make up the virtual

topologies submitted to assign. The output of assign would normally feed back into

the Emulab system to reserve selected physical resources. Allocated physical resources

such as PCs would then boot up and load custom images in preparation for the user’s

experiment. For the purposes of this research, the physical topology solution is sent

to the computer display at the end of the search using diagnostics built into assign.

3.2 System Boundaries

Emulab is a system of systems. Figure 3.1 shows the overall Emulab system

architecture. The User Interface is the portion of the Emulab system that a user

directly interacts with to build a virtual topology either through the webpage GUI

or NS2 script. Accounts and Database house member login accounts and privilege

levels. The MySQLR© database stores the virtual topology specification after being

parsed from the webpage GUI or NS2 script. The MySQLR© database holds idle

experiments state so testbed resources can be released to other experiments. Idle

experiments can be reestablished much faster from the MySQL R© database than from

38

Figure 3.1: The various components of the Emulab system
architecture [12].

the original instantiation since vnode assignments are retained and only resources

in conflict must be remapped. The Experiment Configuration and Control segment

has resource assignment mechanisms (e.g., assign) and systems to configure, monitor

and control experiments in progress. The back-end is the physical testbed elements

including those described in Section 2.2.3. Resources from any one or all testbeds can

be selected and combined into a user experiment [12].

The System Under Test (SUT) is the testbed mapping algorithm known as as-

sign and shown in Figure 3.2. Assign is a subsystem in the overall Emulab system

located in the Resource Allocation block in the Experimental Configuration and Con-

trol segment. Assign includes the search algorithm, the objective function the search

algorithm is attempting to optimize, the scoring and violation system that gauges

solution quality, the subroutine that generates pclasses, node addition and removal

processes, the link resolution process, and mapping and type prechecks.

The objective function and scoring system is discussed in detail in Section 2.3.2.1.

The objective function determines solution quality based on score. The scoring sys-

tem tallies a configuration’s score by summing the penalties for each pnode and plink

assignment. Pclasses are generated immediately prior to mapping since the list of

available testbed resources is constantly fluctuating. The search algorithm interfaces

with the scoring system through node addition and removal processes. As the search

39

Figure 3.2: The system boundaries of the testbed mapping
algorithm.

algorithm selects a vnode to be added, removed or both (in the case of reassignment),

the node addition and removal processes trigger the scoring system to modify the

score and violation count. Hence the score is updated incrementally as opposed to

all at once. The link resolution process is much more streamlined than the node

mapping process, as assign simply finds all possible links between connected nodes

and chooses one. Plinks are chosen according to their cost (e.g., intra-node and direct

links are chosen before intra- and inter-switch links). A mapping precheck creates a

general list of pnodes that are acceptable mappings for each vnode, preventing assign

from exploring infeasible configurations that do not lead to valid solutions. A type

precheck ensures there are available pnode types to match user-specified vnodes and

vclasses.

The Component Under Test (CUT) is the search algorithm, either SA or TS.

Assign’s original SA algorithm is used as the baseline against which the TS version is

measured. Only virtual topologies that meet SF and random criteria are considered.

The problem of differentiating between networks that have random, small-world, SF

or other characteristics is beyond the scope of this research. The virtual topologies

are not “coarsened” in advance to reduce the number of vnodes and vlinks by means

of METIS or another graph partitioner. Graph coarsening takes place outside of

assign, and is not part of the SUT. Only “cluster” resources from a testbed such as

40

Emulab Classic or the AFIT CORE make up the set of testbed resources. Testbed

resources are considered available until the current mapping algorithm selects them for

assignment. Changes in resource availability due to testbed congestion or equipment

failure is not within the scope of this research.

3.3 System Services

Assign creates a proposed physical topology by mapping a user-submitted vir-

tual topology to available testbed resources. A successful outcome occurs when a

physical topology solution with no violations (a feasible configuration) is produced.

This physical topology is a specification that can be immediately instantiated on

available testbed resources and is thus “accepted” by the Emulab system. A failure

happens when either the physical topology is rejected or a fault occurs while assign

is running. A physical topology might be rejected because required testbed resources

are unavailable due to slow mapping time (e.g., another mapping process reserved a

resource that was initially available) or equipment failure (e.g., an initially available

resource is no longer available due to hardware or other problems). A fault arises

when the virtual topology is flawed (e.g., syntax errors or requests for resources that

do not exist) or due to a condition that causes assign to terminate before arriving at

a physical topology solution. A logic error within the assign program or the failure

for the submitted virtual topology to pass mapping or type prechecks are examples of

such conditions. A fault can also occur because no physical topology solution exists

for the virtual topology with the testbed resources currently available.

Only successful service outcomes are analyzed. The focus of this research is

to compare mapping algorithm performance, therefore, rejected physical topologies

due to testbed resource unavailability are not considered. Both versions of assign

are checked by hand, using the 10-node SF virtual topology, to ensure that feasible

physical topologies are produced and no logic or other program errors exist. Pilot

tests are conducted to ensure all virtual topologies pass mapping and type prechecks.

All virtual topologies that make up the experiment workload are syntactically correct

41

and are checked to ensure no other flaws exist. A physical topology solution exists for

each virtual topology with the available testbed resources provided in the .ptop file.

3.4 Workload

The workload of the system is the virtual topologies in the form of .top text

files and the set of available testbed resources described in the .ptop text file. The

workload is artificially created. The .ptop file has 525 PC nodes, more than any known

network emulation testbed in existence. The number of ethernet plinks per pnode in

the .ptop file ranges from 4 to 20. Most Emulab testbeds incorporate PC nodes that

have two to six plinks. Since SF networks have a large number nodes, and some of

these nodes have a large number of links, the synthetic testbed described in the .ptop

file allows a greater range of feasible physical topologies than current existing Emulab

testbeds. Specifically, it allows a greater number of vnode-pnode and vlink-plink one-

to-one mappings. The availability of low-quality assignments helps determine which

search algorithm more tightly “packs” experiments onto testbed resources.

A visual depiction of the .ptop file is shown in Figure 3.3. The synthetic testbed

is comprised of eight network switches. Seven PC network switches interconnect

the testbed PC nodes. One master network switch connects the seven PC network

switches together. Each of the PC network switches is connected to 75 PC testbed

nodes. Each PC node is connected to its respective PC network switch by multiple

gigabit ethernet links. All PC network switches connect to the master network switch

by a single ten-gigabit ethernet link. Table 3.1 lists the number of gigabit plinks

per PC node and the PC network switch to which each node is connected. Few of

the PC nodes have greater than five gigabit plinks. This is representative of actual

Emulab testbeds as older generation workstations with a small number of network

interfaces represent the majority of testbed PC nodes. PC nodes with a large number

of network interfaces are newer, much more expensive to purchase and maintain, and

are therefore present in fewer quantities in most testbeds.

42

Figure 3.3: A diagram of the synthetic testbed described by the .ptop text file. The
eight black boxes represent network switches. The PC testbed nodes are indicated by
gray boxes. Only four of the 75 PC nodes are included in each rack (larger white box)
for notional purposes. All of the 75 PC nodes in each rack are connected to the PC
network switch displayed at the top of the rack by multiple gigabit ethernet plinks
specified in Table 3.1. Each of the seven PC network switches are connected to the
master network switch by a single ten-gigabit ethernet plink.

The virtual topologies consist of 38 SF and random networks ranging from 10 to

1000 nodes. The .top files are also synthetically generated, but represent workloads

a researcher would submit for study, as the virtual topologies are proportional in size

and complexity. Virtual topologies are created using the Boston university Repre-

sentative Internet Topology gEnerator (BRITE) [19] based on the BA SF and ER

random graph models. The BRITE SF model incorporates both concepts key to BA

SF networks, incremental growth and preferential connection. The BRITE SF net-

works start with a single node and as each additional node is added to the topology,

links to existing nodes are established based on preferential attachment. Figure 3.4

shows the 500-node BRITE SF virtual topology using Otter [15], a general purpose

network visualization tool. The three main hubs and self-similar SF characteristics

can easily be seen in Figure 3.4. Small-world networks are not tested. SF networks are

most structured of the three types of complex networks and are assumed to represent

the worst-case workload. Conversely, random networks have the least structure and

43

Table 3.1: The number of gigabit ethernet plinks each
PC node has connecting to its corresponding PC network
switch. For PC node categories that do not all connect
to the same switch, the network switch number is shown
first followed by the amount of PC nodes connected to it
in parenthesis.

PC Node
Number of Plinks

Network Switch
Per PC Node

1-5 20 2
6-20 15 2

21-105 10 2(55), 3(30)
106-170 5 3(45), 4(20)

171-525 4
4(55), 5(75),

6(75), 7(75), 8(75)

represent the majority of virtual topologies submitted by Emulab users. The .top and

.ptop files used in testing are described in Appendix B.

3.5 Performance Metrics

The performance metrics used in this study are objective function score, viola-

tion count and execution time. Assign’s objective function score is a summation of

pnode and plink penalties. Violations determine whether a configuration is feasible

or infeasible. The objective score and violation count together measure the quality

of a physical topology solution. The solution quality is an indicator of how well user

desires are satisfied and how many testbed resources are required to instantiate the

experiment (i.e., how well the experiment is “packed” onto testbed resources). The

execution time is the number of seconds assign requires to find a feasible solution to

the virtual topology specified in the .top file.

The primary performance metric for this study is whether a feasible physical

topology solution is produced from the provided virtual topology and the set of avail-

able testbed resources (i.e., a successful service outcome). SA and TS are sub-optimal

search algorithms, hence a feasible physical topology solution is not guaranteed every

time the search algorithms have completed. The goal of this research is to determine

44

Figure 3.4: A graphic of the 500-node BRITE SF virtual topology with 997 links
using Otter, a general purpose network visualization tool. The nodes are colored by
their degree value. Three SF “hubs” created by incremental growth and preferential
attachment are shown in yellow. Also apparent are the SF self-similar and fractal
characteristics.

whether a TS implementation of assign is superior to Emulab’s existing SA imple-

mentation in terms of execution time and solution quality. Thus, physical topologies

produced by SA and TS that accurately represent submitted virtual topologies (i.e.,

feasible solutions) must be available for comparison. Execution time has a higher

priority than objective function score. A testbed mapping algorithm that can quickly

find a feasible solution to a user’s virtual topology lowers the overall experiment cre-

ation time and increases interactive use of the testbed. This is preferable to increasing

execution time in an attempt to reduce objective function score, lowering the amount

45

of interactivity provided by the Emulab testbed. The total number of iterations per-

formed by the search algorithm and the number of iterations it took to reach the

best solution are recorded, but not analyzed. Future research may use this additional

information for other purposes, such as characterizing how termination conditions

affect search algorithm performance.

3.6 Parameters

System and workload parameters that affect assign’s mapping performance are

shown in Figure 3.2 and described below. Most system parameters are assign runtime

options set at compile time or at execution time via the command line. The remaining

system parameters are environmental (e.g., hardware platform on which assign is

running or amount of simultaneous testbed users). Workload parameters consist of

only the virtual topology and available testbed resources.

3.6.1 System.

• The type of search algorithm is the primary system parameter. It determines

how vnodes are assigned to pnodes in the physical topology.

• The configuration of the search algorithm includes algorithm-specific options,

termination conditions and diagnostic subroutines. The tabu list length and SA

cooling schedule are examples of algorithm-specific options. Algorithm-specific

options determine how meticulously the search algorithm examines the search

space. More careful inspections result in longer runtimes and may yield higher

quality solutions. Coarser inspections complete in less time but may miss high

quality solutions. Termination conditions may or may not be unique to the

search algorithm. Halting the search after a specified number of iterations is an

example of a general termination condition that is not unique to the search algo-

rithm. Termination conditions dictate when the search is complete and prolong

or shorten runtimes. Termination conditions may reduce solution quality if the

search algorithm is stopped after too brief a time period. Diagnostic subroutines

46

track how the search is proceeding, but incur high overhead and typically slow

down execution time due to large amounts of information processed during the

search. An example of a diagnostic is displaying the current solution at every

iteration. Diagnostics are normally disabled when the search algorithm is in

use.

• The size of the search space greatly impacts search algorithm execution time. A

large search space requires a longer time to examine than a small search space at

the same level of detail. A smaller search space will not reduce solution quality

if identical or infeasible solutions are removed.

• The hardware and software platform that hosts assign can affect search algo-

rithm execution time. Processor speed, RAM size, compiler version and compiler

optimizations can speedup or slow down execution time. Solution quality will

remain constant on faster or slower hardware, as long as the search does not

abnormally terminate due to lack of computing resources.

• Scoring and objective function options change both solution quality and execu-

tion time. Adding or removing violations and changing the weight of a penalty

can cause the search algorithm to arrive at a sub-optimal solution faster or

slower than previous settings.

• Testbed congestion can lower solution quality compared to a search where all

testbed resources are available, if components required for a higher quality so-

lution have been allocated by another user. Testbed congestion can also lower

execution time since search space is reduced due to unavailability of testbed

resources.

47

Table 3.2: Assign factors and levels for search algo-
rithms.

Factors Levels
Search algorithm Simulated Annealing, Tabu Search

Network type Scale-free, Random
Number of 10, 20 30, 40, 50, 60, 70, 80, 90, 100, 200

vnodes 300, 400, 500, 600, 700, 800, 900, 1000

3.6.2 Workload.

• The virtual topology submitted by the user is the primary workload parameter.

A large number of vnodes and vlinks in the virtual topology increases the search

space examined by the search algorithm, inflating execution time.

• The number of available testbed resources can also increase or reduce search

space. A larger number of testbed resources may broaden search space and

increase execution time, but may also increase solution quality since there is

a higher probability that available pnodes will have features that are a good

match for vnode requirements.

3.7 Factors

Factors are parameters varied during experimentation [2]. Since the goal of this

research is to determine which search algorithm is superior, the first factor is the search

algorithm type. This research is concerned with complex networks, so the second and

third factors are the network type and number of nodes in the submitted virtual

topology. Table 3.2 lists the factors and levels in assign. Values for parameters not

chosen as factors are listed in Table 3.3, Table 3.4 and Appendix A. It is anticipated

that the TS algorithm will produce solutions of equal or higher quality than assign’s

original SA search algorithm. Execution times to arrive at these solutions are expected

to be lower for the TS than the SA algorithm.

48

Table 3.3: The hardware and software test environ-
ment used to analyze the performance of assign.

Component Value
Computer Make & Model Dell Latitude D620 laptop computer
Processor Type IntelR© CoreTM Duo processor
Processor Clock Speed 2.16 GHz
RAM Size 2048 MB
Operating System FreeBSD version 6.1 release 0
Desktop Environment K Desktop Environment release 3.5.1
Integrated Development Environment KDevelop release 3.3.1
Assign Version 20061122
C and C++ Compiler GCC version 3.4.4

3.8 Evaluation Technique

There are no analytical or simulation models to evaluate assign, therefore the

evaluation technique is direct measurement. Assign is a real system that has been

used by Emulab since January 2000. Assign is written in the C program language

and can be compiled and executed on any computing platform able to host the Em-

ulab system. The availability and portability characteristics of assign make direct

measurement an appealing evaluation technique. The physical environment and envi-

ronmental variables used for testing are listed in Table 3.3. The remaining portion of

the experimental setup consisting of compiler optimization level, SA cooling schedule

options and other makefile configuration settings are specified in Appendix A.

Assign is launched from the command line in a console window within the K

Desktop Environment. The command line arguments are the virtual topology file

(.top), the available testbed resources file (.ptop) and any runtime options. The .top

and .ptop files used in testing are listed in Appendix B. Table 3.4 shows the runtime

options used in testing. Virtual topologies are submitted one at a time. Each time a

virtual topology is submitted, assign chooses a seed to initialize its random number

generator. To reproduce the results in this research, preselected random seeds shown

are submitted via the command line. Only one instance of assign is executing at

any given time. There is no testbed congestion and all testbed resources remain

49

Table 3.4: The runtime options used to analyze the
performance of assign.

Option Description Value
-s <seed> Random Number Generator Seed varies

-P Prune Unsuable Pclasses n/a

-H <float>
Branching Factor or

1.0
Neighborhood Size Multiplier

available while assign is executing. The computer clock measures the time for each

search algorithm to find a feasible solution. The execution time, objective function

score and violation count is output to the console window when the search algorithm

terminates. The objective function scores, number of violations and execution times

for each virtual topology is shown in Appendix C.

The virtual topologies are submitted to assign from the smallest topology to the

largest, in the order shown in Table 3.2. The smallest topology, consisting of ten nodes,

is submitted first. This topology is used to validate the physical topology solutions

produced by both versions of assign. Validation is accomplished by comparing the

resultant physical topology solution produced by each version of assign to the original

10-node SF virtual topology.

3.9 Experimental Design

The experimental design is a full factorial experiment consisting of combinations

of the factors and levels shown in Table 3.2. A full factorial is selected due to the

small number of factors and levels and because it “tests every possible combination

at all factor levels” [2]. Since there are three factors, two with two levels and one

with 19, a full factorial design requires 76 experiments. Experiment repetition is

based on variance of the results collected. Initially, 200 repetitions will be conducted.

Additional repetitions will be conducted if required by the analysis. The resolution

of the measurements is determined by the computer’s system clock and the scoring

system.

50

3.10 Implementation

The TS algorithm is implemented by modifying the anneal.cc source code. An-

neal.cc is the C code implementation of the SA search algorithm in assign. Anneal.cc

is a function called by assign.cc, assign’s source code in the Emulab testbed software

environment. Prior to launching the SA search algorithm, assign initializes its random

number generator using a preselected seed, reads in the available testbed resources by

parsing the .ptop file, calculates the shortest paths to all available switches using a

minimum spanning tree algorithm, and reads in the virtual topology .top file. Pclasses

are generated to reduce search space. Mapping and types prechecks are conducted to

prevent exploration of unnecessary configurations and to further reduce search space.

3.10.1 Original Anneal.cc using SA Search Algorithm. The original an-

neal.cc consists of two loops, one loop embedded in the other. Prior to entering the

outer loop, “fixed” vnodes are assigned to specified pnodes. Fixed vnodes are vn-

ode assignments specifically requested by the user or vnodes that were successfully

mapped by a prior instance of assign. Fixed vnodes are removed from the set of

vnodes to be mapped, thus decreasing search space. As pnodes are allocated, empty

pclasses are removed also decreasing search space. The branching factor O(v · p)

represents an worst case or upper bound, as v, the number of vnodes, is reduced by

graph coarsening and the removal of fixed vnodes. p, the number of pnodes, is low-

ered by the use of pclasses, mapping and types prechecks, and the removal of empty

pclasses. After all fixed vnodes are assigned, remaining vnodes constitute the set of

unassigned vnodes. An initial objective function score and number of violations is

calculated based on the set of unassigned vnodes and their vlinks. This initial score is

invariant and is compared to the score of the final physical topology after all vnodes

are unassigned. If these two scores are not equal, assign notifies the user the final

solution may be invalid.

Each outer loop iteration corresponds to a temperature step in the SA cooling

schedule. The first iteration is the melting period. The goal of the melting period

51

is to determine an initial temperature such that every possible move and resulting

configuration is accepted. The second and later iterations are chill periods. The goal

of the chill periods are to lower the initial temperature until only a single configu-

ration is accepted, which becomes the physical topology solution. The temperature

is lowered based on the standard deviation of objective function scores of accepted

configurations. The outer loop terminates when the derivative of the average temper-

ature change is smaller than a specified epsilon value of 0.0001. After the outer loop

is exited, the current configuration reverts to the best known configuration, and the

SA search algorithm returns this configuration to assign as the final physical topology

solution.

Each inner loop iteration creates a new configuration and compares its objective

function score and violation count with the score and violation count of the previous

accepted configuration. The best configuration achieved thus far is also recorded.

During the melting phase, all new configurations are accepted. During chill periods,

a new configuration is accepted if it has less violations than the previously accepted

configuration or if it has the same number of violations and a lower score. If the new

configuration has a higher score, it is accepted based on the current temperature.

The inner loop terminates when the total number of iterations exceeds the number

of possible configurations in the search space. During either the melting or chill

periods, a new configuration is accepted if its score is lower than the optimal score.

The optimal score is computed a priori and represents a lower bound for the physical

topology solution. If a configuration is found whose score is lower than the optimal,

both loops are immediately exited and the SA search algorithm returns with this

configuration as the final physical topology solution.

A new configuration is created by randomly selecting an unassigned vnode to

be mapped to a pnode. Once all vnodes have pnode assignments, a randomly chosen

vnode is selected for reassignment. The chosen vnode has its current pnode assignment

removed, and another acceptable pnode or pclass is randomly selected for assignment.

If another pnode (pclass) match cannot be found, the chosen vnode is placed back

52

into the set of unassigned vnodes. Another vnode is then randomly selected, its pnode

(pclass) is unassigned, and the second vnode is also placed into the set of unassigned

vnodes. The process restarts itself and a randomly chosen unassigned vnode is selected

for assignment, since the set of unassigned vnodes is no longer empty. There is a fifty

percent chance that the first chosen vnode will be selected again and the probability

is greater for a successful match, since there is another pnode resource available.

3.10.2 Modified Anneal.cc using TS Search Algorithm. A single multimap

data structure implements both the tabu and candidate lists in the TS search algo-

rithm. The multimap data structure is described in the following quote:

Multimap is a Sorted Associative Container that associates objects of type Key
with objects of type Data. Multimap is a Pair Associative Container, meaning
that its value type is pair <const Key, Data>. It is also a Multiple Associative
Container, meaning that there is no limit on the number of elements with the
same key. [26]

In the SA search algorithm, a score differential metric establishes the initial tem-

perature that will be used after the melting phase. The score differential is calculated

by subtracting the score of the newly accepted configuration from the score of the pre-

viously accepted configuration. A score differential of less than zero means the new

configuration is of lower quality, increasing the objective function score. TS ignores

the SA temperature-based acceptance criteria and accepts all new configurations. The

multimap data structure in the TS search algorithm uses the score differential as the

key for each element. The data portion of the element consists of a second embed-

ded pair data structure. The second pair contains the vnode name and the iteration

number when the vnode is no longer tabu. The tabu duration is a randomly chosen

integer between the values of one and the total number of non-fixed vnodes minus

one. The iteration number when the vnode is no longer tabu is the sum of the current

iteration number and tabu duration. After all vnodes are initially assigned, a vnode

is selected for reassignment by parsing the multimap from beginning to end. The first

vnode whose iteration number is less than the current iteration number and is not

tabu is chosen for reassignment. After the chosen vnode is successfully mapped, it

53

is placed back into the multimap with a new tabu iteration number. The insertion

operation is never worse than logarithmic [27]. If the chosen vnode cannot be suc-

cessfully assigned a new pnode, it placed into the set of unassigned vnodes similar to

the SA method described above. Another vnode is then randomly selected and its

pnode (pclass) is unassigned to increase the chances that the first chosen vnode can

be successfully reassigned.

The tabu list is implemented by the iteration number that indicates when the

vnode is no longer tabu. The previous configuration will be revisited if the same vnode

is immediately reassigned to its prior pnode. The vnode iteration number prevents

this from occurring by forcing another vnode to be chosen for reassignment. If all

vnodes are tabu, an aspiration condition allows the first vnode in the multimap (the

one with the lowest score differential) to be selected for reassignment.

The candidate list is realized since the multimap elements are always sorted in

ascending order by score differential key [27]. A low score differential key means the

vnode reassignment increased the objective function score and decreased the configu-

ration’s quality. Therefore, vnodes with a lower score differential are better candidates

to improve the configuration’s objective function score than vnodes with a higher score

differential.

The TS search algorithm performs a “restart” when the change in the average

score drops below a specified epsilon value of 0.000001. This is similar to the SA

termination condition, except that SA compares its epsilon value with the change in

temperature, not objective function score. TS uses its epsilon value to detect local

optimums, when the current objective function score is no better or worse than the

configurations immediately before and after. The restart returns TS to the previous

best known configuration and the search continues from that point. TS requires that

the number of restarts equal the number of non-fixed vnodes prior to ceasing the

search. Once the minimum number of restarts has been accomplished, TS uses the

epsilon value to detect the local optimum in the current region of space and terminates.

54

3.11 Summary

An experimental methodology is specified to determine whether a TS imple-

mentation of assign is superior to Emulab’s existing SA implementation in execution

time and solution quality when mapping complex virtual topologies. Two primary

factors are identified, the type of search algorithm and virtual topology. Both im-

pact assign’s ability to create a high quality physical topology solution in a minimal

amount of time. An experimental design is developed around these primary factors

to gauge the performance of both search algorithms, and the results are presented in

the next chapter.

55

IV. Data Analysis

This chapter presents the data collected using the methodology outlined in Chap-

ter 3. The goal of this research is to determine whether a TS implementation of

assign is superior to Emulab’s existing SA implementation with respect to execution

time and solution quality. It is expected that a TS implementation of assign will lo-

cate physical topology solutions in less time than Emulab’s existing version of assign

when mapping identical SF virtual topologies. It is further expected that the number

of violations and the objective score of TS solutions will be equal to or lower than SA

solutions for the same virtual topologies.

4.1 Validation

Figure 4.1 shows the physical topology produced when the 10-node SF virtual

topology is submitted to assign using the SA search algorithm and a random number

generator seed of 128. Assign successfully terminated without violations. The physi-

cal solution accurately represents the intended virtual topology, included in the lower

right of the diagram for comparison. The 10-node SF virtual topology submitted to

the TS version of assign produced a similarly accurate physical topology. Many differ-

ent feasible physical topologies can be produced by either version of assign for a given

virtual topology, as random number generator seeds are varied. It quickly becomes

difficult with large virtual topologies to manually validate each physical topology is

an acceptable solution. Given that the mapping process used by assign does not

change from one virtual topology to the next, the physical topologies produced by

both versions of assign in this research are assumed valid.

4.2 Vlink Multiplexing Issues

The physical solution shown in Figure 4.1 demonstrates some key resource con-

version techniques. Four vnodes are multiplexed onto two pnodes. The physical

topology is not spread across multiple switches, unnecessarily using limited inter-

switch bandwidth. The solution is not optimal, however, since a better solution would

56

Figure 4.1: A physical topology solution for the 10-node SF virtual topology sub-
mitted to the SA version of assign. The random number generator seed is 128. The
entire physical topology resides on pnodes connected to PC network switch 2. Only
pnodes that contain vnodes are shown. Vnodes are mapped one-to-one to pnodes
except for vnodes 7 and 9 mapped to pnode apc2-23 and vnodes 5 and 8 mapped
to pnode apc2-24. All vlinks are mapped one-to-one onto intra-switch plinks. The
mapped vlinks are color-coded and not shown passing through network switch 2 for
easy comparison to the 10-node SF virtual topology on the right.

incorporate intra-node plinks and multiplex more than one vlink onto an intra-switch

plink. Instead, all vlinks are mapped one-to-one using separate intra-switch plinks.

The mapped vlinks are color-coded in Figure 4.1 and not shown passing through net-

work switch 2 so they can be more easily compared to the 10-node SF virtual topology

on the right.

While vlink multiplexing across inter-switch plinks was a common occurrence,

the lack of intra-switch vlink multiplexing and intra-node plinks was apparent through-

out testing. No instances of intra-node plinks or intra-switch vlink multiplexing could

57

(a) (b) (c)

Figure 4.2: Three examples illustrating vlink multiplexing in a pnode host. The
large box represents the pnode host and the channels at the top represent available
plinks. Vnodes are depicted by circles and vlinks are shown by lines with arrows
originating from the circles. Assign’s mapping precheck prevents condition (a) from
occurring, even though plink port 2 has enough bandwidth to support both vlinks.
Condition (b) was not observed in any of the experiments completed for this research,
even for plinks that had enough bandwidth to support vlink from different vnodes.
The only acceptable mapping is condition (c).

be found in any of the physical topologies generated by both search algorithms. Fig-

ure 4.2 illustrates three cases of vlink multiplexing in a pnode host. Condition (a) in

Figure 4.2 is prevented by assign’s mapping prechecks. The original 200 to 1000-node

SF virtual topologies did not pass assign’s mapping prechecks because the nine topolo-

gies each had a small number of vnodes with greater than 20 vlinks, even though each

plink is capable of supporting multiple vlinks. As an example, the vnode mapping

precheck indicated that no possible pnode assignments existed for three of the vnodes

in the 200-node SF topology. Condition (b) was never observed in any of the physical

topologies produced by the search algorithms while condition (c) was commonplace.

Figure 4.1 demonstrates two cases of condition (c) where vnodes 7 and 9 are mapped

together on a single pnode and vnodes 5 and 8 are mapped together on a different

pnode.

Vnodes with 20 or more vlinks in the SF virtual topologies with 200-nodes

or greater were modified to pass assign’s mapping prechecks. Table 4.1 shows the

58

Table 4.1: Vnodes from the nine SF virtual topologies that were
reduced to 20 vlinks in order to pass assign’s mapping prechecks.
The first column identifies the affected SF virtual topology. The
second column lists the number of vnodes in the topology with more
than 20 links. The third column specifies the original number of
vlinks for each vnode in the second column.

SF Virtual Number of Vnodes Original Number
Topology With Over 20 Vlinks of Vlinks

200 3 26, 22, 21
300 4 22, 35, 25, 30
400 7 23, 48, 21, 28, 24, 22, 31
500 7 26, 44, 21, 28, 29, 54, 47

600 9
39, 39, 28, 43, 47, 40, 33,
24, 26

700 12
22, 29, 23, 54, 34, 40, 36,
26, 23, 26, 23, 29

800 13
21, 26, 46, 22, 27, 47, 31,
31, 55, 27, 57, 24, 33

900 13
59, 22, 31, 38, 29, 42, 50,
37, 32, 44, 31, 48, 22

1000 12
29, 22, 21, 31, 21, 29, 111,
30, 21, 42, 30, 84

affected vnodes from the SF virtual topologies and their original vlink count. All the

vnodes in Table 4.1 had their vlink total reduced to 20 by eliminating vlinks from the

.top files. For example, in the 500-node virtual topology, the first six vlinks where the

vnode with 26 vlinks was the source or destination were deleted. Care was taken to

ensure no vnodes were isolated after all necessary vlinks were removed. This removal

process constituted an 11 percent average reduction in the total amount of vlinks in

affected SF virtual topologies.

The restrictions on vlink multiplexing created another problem. If vlinks can

only be mapped one-to-one onto intra-node plinks, then a feasible physical topology

no longer exists for SF virtual topologies with 200 nodes or greater using the original

set of testbed resources. The original .ptop file incorporated only five pnodes with

20 plinks (see Table 3.1). As shown in Table 4.1, all SF virtual topologies with 400

59

nodes or greater have at least seven vnodes with 20 vlinks. Additionally, the 200

and 300-node SF virtual topologies each have multiple vnodes with over 15 vlinks

preventing a solution using the original set of testbed resources. Another .ptop file

was fashioned representing a second set of testbed resources. All 525 pnodes in this

set of testbed resources have 20 gigabit plinks connecting to their corresponding PC

network switch.

4.3 Analysis of Valid Solutions

The primary performance metric for this study is whether a feasible physical

topology solution is produced from the provided virtual topology and the set of avail-

able testbed resources. SA and TS are sub-optimal search algorithms, hence a feasible

physical topology solution is not guaranteed every time the search algorithms have

completed. The goal of this research is to determine whether a TS implementation

of assign is superior to Emulab’s existing SA implementation in terms of execution

time and solution quality. In order to meet this goal, physical topologies produced

by SA and TS that are an accurate representation of the submitted virtual topologies

(e.g., feasible solutions) must be available for comparison. Tables 4.2 and 4.3 list the

number of valid physical topology solutions created by both search algorithms for all

virtual topologies. 200 trials were run for each virtual topology and search algorithm

combination. The first ten rows of Tables 4.2 and 4.3 show the results when the 10 to

100-node virtual topologies are mapped to the original set of testbed resources. The

last nine rows of both tables show the results when the 200 to 1000-node topologies

(altered to pass assign prechecks) are mapped to the second set of testbed resources

described in the previous section.

Tables 4.2 and 4.3 also show the results of a two binomial proportion test on the

number of valid physical topology solutions produced by both search algorithms. A

two binomial proportion test with 95 percent confidence was conducted to determine

if there is a statistically significant improvement in the number of valid solutions when

using TS versus SA. The null hypothesis for the proportion test is that the proportion

60

Table 4.2: The number of valid physical topology solutions created by
the search algorithms for the random virtual topologies. 200 trials were
run for each virtual topology and search algorithm combination. The sec-
ond set of testbed resources was used for virtual topologies with 200 nodes
and greater (indicated by a single asterisk). A double asterisk indicates
Fisher’s exact test was used to calculate the 2-Proportion test p-value, as
the sample size was to small for normal approximation.

Random Virtual SA Valid TS Valid 2-Proportion Higher
Topology Solutions Solutions Test p-value Proportion

10 200 200 n/a No difference
20 200 200 n/a No difference
30 200 200 n/a No difference
40 200 200 n/a No difference
50 200 200 n/a No difference
60 196 198 0.685∗∗ No difference
70 170 190 0.001 TS
80 200 176 0.0 SA
90 14 164 0.0 TS
100 0 88 0.0 TS
200∗ 166 200 0.0 TS
300∗ 30 200 0.0 TS
400∗ 30 200 0.0 TS
500∗ 0 200 0.0 TS
600∗ 14 200 0.0 TS
700∗ 12 200 0.0 TS
800∗ 0 200 0.0 TS
900∗ 5 200 0.0 TS
1000∗ 0 200 0.0 TS

of valid solutions produced by TS and SA for a given network type and number of

vnodes do not differ by a statistically significant amount. The alternate hypothesis is

that the TS proportion is greater than the SA proportion of valid solutions (upper-

tailed). If the p-value shown in the fourth column of Tables 4.2 and 4.3 is smaller

than the α value of 0.05 (95 percent confidence), then the result is consistent with

alternate hypothesis. For random virtual topologies shown in Table 4.2, there was

no difference between the search algorithms for topologies with 60 nodes or less. For

random topologies with greater than 60 nodes, there was a statistically significant

61

Table 4.3: The number of valid physical topology solutions created by
the search algorithms for the SF virtual topologies. 200 trials were run for
each virtual topology and search algorithm combination. The second set
of testbed resources was used for virtual topologies with 200 nodes and
greater (indicated by a single asterisk).

SF Virtual SA Valid TS Valid 2-Proportion Higher
Topology Solutions Solutions Test p-value Proportion

10 200 200 n/a No difference
20 200 200 n/a No difference
30 200 200 n/a No difference
40 200 200 n/a No difference
50 130 200 0.0 TS
60 18 194 0.0 TS
70 0 138 0.0 TS
80 0 48 0.0 TS
90 0 148 0.0 TS
100 0 106 0.0 TS
200∗ 0 0 n/a No difference
300∗ 0 82 0.0 TS
400∗ 0 0 n/a No difference
500∗ 0 0 n/a No difference
600∗ 0 96 0.0 TS
700∗ 0 0 n/a No difference
800∗ 0 140 0.0 TS
900∗ 0 22 0.0 TS
1000∗ 0 46 0.0 TS

improvement in the number of valid physical topologies produced when using TS.

The only exception was the 80-node random topology, when there was a statistically

significant improvement using SA. For the SF virtual topologies shown in Table 4.3,

there was no difference between the search algorithms for topologies with 40 nodes or

less. For SF topologies with greater than 40 nodes, there was a statistically significant

improvement in the number of valid physical topologies produced when using TS for

all but four topologies. There was no difference between the search algorithms for

the SF topologies of 200, 400, 500 and 700 nodes, as neither search algorithm could

produce a valid solution. Figures 4.3 and 4.4 visually display the data from Tables 4.2

and 4.3 as line graphs for easy reference.

62

Figure 4.3: Line graph of the number of valid solutions produced by SA and TS
for random and SF networks with less than 100 nodes. TS was able to produce a
statistically significant greater amount of solutions for all 18 virtual topologies with
the exception of the 80-node random topology. SA was able to produce a statistically
significant greater amount of solutions for this topology.

Figure 4.3 shows that TS and SA are able to produce a valid solution for every

trial for random virtual topologies with 50 nodes or less and SF virtual topologies

with 40 nodes or less. In both networks, SA starts to fail to produce valid solutions

for networks with fewer vnodes than TS. Additionally, the rate of failure is greater

for SA than TS. The exception is the 80-node random topology, where SA is able to

produce a higher amount of valid solutions. In Figure 4.4, SA and TS are able to

produce a greater proportion of valid solutions for the 200 than the 100-node random

topology. This is because the second set of testbed resources is used for topologies

greater than 100 nodes. Figure 4.4 also shows that TS is able to find a valid solution

for every trial for random topologies with 200 nodes and greater, while the proportion

of valid solutions produced by SA drops off quickly for random topologies with greater

than 200 nodes. SA is never able to find a valid solution for SF topologies with 100

nodes or greater.

63

Figure 4.4: Line graph of the number of valid solutions produced by SA and TS
for random and SF networks with 100 nodes or greater. TS was able to produce a
statistically significant greater amount of solutions for all 20 virtual topologies with
the exception of four topologies. There was no statistically significant improvement
between the search algorithms for the SF topologies of 200, 400, 500 and 700 nodes.
Neither search algorithm could produce a valid solution for these topologies.

TS is able to find valid solutions for a portion of the SF virtual topologies with

100 nodes and greater. However, this trend is not linear and seems to oscillate in

Figure 4.4. This anomaly is also present in the 80-node SF virtual topology shown

in Figure 4.3, which is mapped with a lower proportion of success by TS than the

90 and 100-node SF virtual topologies. Due to a uniform degree distribution among

nodes, the structure of random virtual topologies do not vary to the extent of the

SF topologies. Figures 4.3 and 4.4 show that for the majority of the random virtual

topologies, as the number of nodes increases, the proportions of valid solutions created

by both search algorithms decreases. Figure 4.4 shows that node number is not always

the dominate factor in predicting whether TS is able to produce a valid solution in

the case of SF virtual topologies. Other SF characteristics, such as the number of

hubs and the average number of links per hub, may also influence the ability of TS

to produce valid solutions.

64

4.4 Analysis of Execution Time and Solution Quality

Figures 4.5 and 4.6 show the measured execution time and objective function

score for all virtual topologies and search algorithms. Only the first 20 of the 200 trials

is required for analysis, due to the small variance in data values for the same virtual

topology and search algorithm combination. The measured objective function scores,

violation count and execution times for the first 20 trials for all virtual topology and

search algorithm combinations is recorded in Appendix C. Only 10 of the 19 virtual

topologies in which both search algorithms were able to produce at least one valid

solution are analyzed. Trials that did not produce a valid solution were excluded.

A total of 554 data points (approximately 27 data points per search algorithm and

virtual topology combination) were used in the analysis. Figure 4.5 shows that SA

maintains a relatively constant execution time of 1 to 2 seconds regardless of network

type and node number. Conversely, TS execution time increases with node number,

especially for random virtual topologies greater than 100 nodes. Figure 4.6 shows

that both SA and TS objective function score increases with node number. However,

the rate at which objective score increases is steeper for TS than SA.

Figures 4.7 through 4.10 show the residuals for measured execution times and

objective function scores for both search algorithms. In all four figures, the “Normal

Probability Plot of the Residuals” and the “Histogram of the Residuals” show that

errors are not normally distributed. The “Residuals Versus the Fitted Values” show

errors do not have a constant standard deviation, as there appears to be a tendency

of either increasing or decreasing spread as response increases towards the left of the

graph. Only in Figure 4.7 do errors appear to be independent, as the “Residuals Versus

the Order of the Data” plot in the remaining three figures show trends in the graphs.

An Analysis of Variance (ANOVA) cannot be conducted to determine which search

algorithm performs better in terms of execution time or objective function score,

as the underlying ANOVA assumptions of statistically independent errors, normally

distributed errors and errors with a constant standard deviation are violated.

65

Figure 4.5: Measured execution time by search algorithm and virtual topology. SA
maintains a relatively constant execution time of 1 to 2 seconds regardless of network
type and node number. TS execution time increases with node number, especially for
random virtual topologies greater than 100 nodes.

Figure 4.6: Measured objective function score by search algorithm and virtual
topology. Both SA and TS objective function score increase with node number,
however, the rate of increase is greater for TS than SA.

66

Figure 4.7: Residual plots for measured simulated annealing execution time data.

Figure 4.8: Residual plots for measured simulated annealing objective function
score data.

67

Figure 4.9: Residual plots for measured tabu search execution time data.

Figure 4.10: Residual plots for measured tabu search objective function score data.

68

4.4.1 Analysis of Execution Time. Figures 4.11 through 4.14 show the 95

percent confidence intervals for the mean execution time for both search algorithms

with all virtual topologies combined, separated by network type and separated by the

number of nodes. When all virtual topologies are combined in Figure 4.11, the execu-

tion time of TS is statistically higher than SA. However, when the virtual topologies

are separated by network type in Figure 4.12, the execution time of TS is statistically

lower than SA for SF virtual topologies. The execution time of TS is statistically

higher than SA for virtual topologies with 100 nodes and greater, as shown by Fig-

ure 4.14. For virtual topologies with less than 100 nodes, the execution time of TS is

statistically lower than SA, as shown in Figure 4.14. These observations conflict with

the first research hypothesis, that a TS implementation of assign could locate physical

topology solutions in less time than Emulab’s existing version of assign when map-

ping identical virtual topologies. Only in cases of SF virtual topologies and topologies

with 100 nodes and greater was TS able to execute in less time than SA.

Figure 4.11: 95 percent confidence intervals for the mean execution time for both
search algorithms with all virtual topologies combined, regardless of network type and
node number.

69

Figure 4.12: 95 percent confidence intervals for the mean execution time for both
search algorithms for random and SF virtual topologies.

Figure 4.13: 95 percent confidence intervals for the mean execution time for both
search algorithms for virtual topologies with less than 100 nodes.

70

Figure 4.14: 95 percent confidence intervals for the mean execution time for both
search algorithms for virtual topologies with 100 nodes and greater.

4.4.2 Analysis of Objective Function Score. Figures 4.15 through 4.18 show

the 95 percent confidence intervals for the mean objective function score for both

search algorithms with all virtual topologies combined, separated by network type

and separated by the number of nodes. When all virtual topologies are combined

in Figure 4.15, the objective function score of TS is statistically higher than SA.

When virtual topologies are categorized by network type in Figure 4.16, there is

no statistically significant difference in score for TS and SA for SF topologies. In

cases when the number of nodes in the virtual topology is less than 100, there is

no statistically significant difference in the score of both search algorithms. SA does

produce a statistically lower score for virtual topologies with 100 nodes or greater.

These observations conflict with the second research hypothesis, that the number of

violations and the objective score of TS solutions would be equal to or lower than SA

solutions for the same virtual topologies. Only for SF virtual topologies and topologies

with less than 100 nodes is there no statistically significant difference in the objective

function score of both search algorithms.

71

Figure 4.15: 95 percent confidence intervals for the mean objective function score
for both search algorithms with all virtual topologies combined, regardless of network
type and node number.

Figure 4.16: 95 percent confidence intervals for the mean objective function score
for both search algorithms for random and SF virtual topologies.

72

Figure 4.17: 95 percent confidence intervals for the mean objective function score
for both search algorithms for virtual topologies with less than 100 nodes.

Figure 4.18: 95 percent confidence intervals for the mean objective function score
for both search algorithms for virtual topologies with 100 nodes and greater.

73

4.5 Summary

This chapter presented the measured data for the execution time and objective

function scores for SA and TS search algorithms. The first analysis conducted a two

binomial proportion test to determine which search algorithm was able to produce a

higher proportion of valid physical topology solutions. The second analysis determined

which search algorithm was able to execute in less time for all combined virtual

topologies, and then for virtual topologies divided by network type and node number.

The third analysis determined which search algorithm was able to produce a lower

objective function score for similar virtual topology categories. In the next chapter,

conclusions drawn from these analyses are discussed along with suggestion for future

research.

74

V. Conclusions

This chapter presents a summary of the research conducted and conclusions from

the analysis provided in Chapter 4. Significance of the research, contributions

and areas for future research is discussed.

5.1 Research Summary and Conclusions

This research investigated the problem of creating high quality, feasible solutions

for complex networks with thousands of nodes in a minimum amount of time. The goal

of this research was to determine whether a TS implementation of assign was superior

to Emulab’s existing SA implementation in terms of execution time and solution

quality. The first hypothesis was that a TS implementation of assign could locate

physical topology solutions in less time than Emulab’s existing version of assign when

mapping identical virtual topologies. The second hypothesis was that the number of

violations and the objective score of TS solutions would be equal to or lower than SA

solutions for the same virtual topologies.

The first hypothesis was proven to be false because only in cases of SF virtual

topologies and topologies with 100 nodes and greater was TS able to execute in less

time than SA. The second hypothesis was also proven to be false because only for SF

virtual topologies and topologies with less than 100 nodes was there no statistically

significant difference in the objective function score of both search algorithms. It

should be noted that virtual topologies of 100 nodes and greater included only random

networks, as SA was unable to produce a valid solution for SF networks with over 70

nodes. The fact that TS was able to execute quicker and produce equivalent objective

function scores for SF virtual topologies should also be noted. It stands to reason that

the random or lack of structure in the random virtual topologies was better match for

simulated annealing, while TS was the better search algorithm for the more defined

structure of the SF topologies.

Although TS was unable to best SA in terms of execution time and solution

quality, it was able to produce an equal higher proportion of valid physical solutions

75

for all 38 virtual topologies except for one. This was especially prominent for virtual

topologies with 100 nodes or greater. As the number of nodes is dominant feature

of complex networks, the success of TS over SA in simply producing a valid physical

topology solution should not be overlooked.

5.2 Research Significance and Contributions

This is the first known implementation of TS in a solver for the testbed mapping

problem. Previous research focused on the use of external programs, such as METIS,

to augment assign’s existing SA search algorithm in the creation of valid physical

topologies. Although METIS was able to execute very quickly, it caused a higher

use of resources per virtual topology as a tradeoff for its speed. Additionally, the

SA search algorithm still needed to execute in order to create a physical topology

solution. Genetic algorithms were also explored as SA alternatives in journals and

other published research papers. None of the genetic algorithms developed were able

to best SA in terms of execution time or solution quality. The significance of this

research is that a fully realizable version of assign has been produced that uses TS.

This version of assign can be compiled and immediately put into use on an Emulab

testbed.

5.3 Future Work

Assign has many areas available for future research. An analysis of the im-

pacts of different termination conditions would benefit both the SA and TS search

algorithms, as shown by the additional data provided in the tables of Appendix C. It

appears that in many cases SA terminated its search prematurely when attempting to

map the larger virtual topologies. Also, since the tabu list duration impacts the per-

formance of the TS search algorithm to such a great degree, development of a reactive

TS search algorithm that automatically adapts its tabu duration based on search per-

formance may yield a better performing search algorithm than this implementation

of TS.

76

Appendix A. Makefile Used to Compile Assign Source Code

Listing A.1 details the makefile configuration used to analyze the performance of

assign using SA and TS search algorithms. The makefile and parameters indicated in

Table 3.3 comprise the software test environment. The makefile includes the compiler

optimization level, cooling schedule and other SA-specific options, and settings to

change vlink mapping behavior.

Listing A.1: Assign Makefile
#
EMULAB -COPYRIGHT
Copyright (c) 2000 -2005 University of Utah and the Flux Group.
All rights reserved.
#
SRCDIR = .
TESTBED_SRCDIR = ..
OBJDIR = ..
SUBDIR = assign
MAKEFILE_IN = ./ GNUmakefile.in

include $(OBJDIR)/Makeconf

Uncomment to build with GCC version 3.3.x
#CC=gcc33
#CPP=cpp33
#CXX=g++33

all: assign

include $(TESTBED_SRCDIR)/GNUmakerules

OBJS=parse_top.o parse_ptop.o assign.o pclass.o vclass.o \
config.o score.o parser.o solution.o anneal.o \
featuredesire.o neighborhood.o fstring.o

LIBS+= -lm
LDFLAGS+= -pipe -O3
CXXFLAGS = - pipe -I/usr/local/include -ftemplate -depth -40

Sets compiler optimization to level 3
CXXFLAGS += -O3
Sets compiler to optimization to level 0, includes
verbose warnings and implements debugger
#CXXFLAGS += -O0 -g -Wall -DVERBOSE
Various assign diagnostic options
#CXXFLAGS += - DSCORE_DEBUG
#CXXFLAGS += - DSCORE_DEBUG_MORE
#CXXFLAGS += - DPCLASS_DEBUG
#CXXFLAGS += - DDUMP_GRAPH
#CXXFLAGS += - DSCORE_DEBUG_LOTS

77

#CXXFLAGS += - DSTATS

Assign now supports a dizzing array of defines.
Here are the ones used for a typical build:

Pick cooling schedule
CXXFLAGS += - DMELT -DEPSILON_TERMINATE -DCHILL -DNEIGHBOR_LENGTH \

-DLOCAL_DERIVATIVE -DALLOW_NEGATIVE_DELTA
Bug/scoring fixes
CXXFLAGS += - DINTERSWITCH_LENGTH - DPNODE_SWITCH_LOAD \

-DFIX_SHARED_INTERFACES
Various tweaks to the simulated annealing behavior
CXXFLAGS += - DFIND_PNODE_SEARCH -DNO_REVERT
Keeps information about which pclasses are potential mappings
for vnodes on a per -vnode basis , not a per -type basis
CXXFLAGS += - DPER_VNODE_TT
Should be on by default , but not well tested enough
#CXXFLAGS += - DSMART_UNMAP
Make sure that all emulated links that are assigned to a plink
have the same endpoints
CXXFLAGS += - DFIX_PLINK_ENDPOINTS
Allow pnodes to cap the amount of trivial link bandwidth
they can handle
CXXFLAGS += - DTRIVIAL_LINK_BW
Use the old acceptance criteria , which gives special treatment
to violations
CXXFLAGS += - DSPECIAL_VIOLATION_TREATMENT

If you’re looking to turn on or off USE_OPTIMAL , its now a
cmdline option . Use OP={0 ,1} on the command line at run time.

DEPLIBS=$(OBJS)

assign : ${MAKEFILE_IN} ${DEPLIBS} ${OBJS}
${CXX} -o assign ${LIBS} $(OBJS) ${LDFLAGS}

install: $(INSTALL_LIBEXECDIR)/assign

clean:
-${RM} *.o assign

All of this generated with ’g++ -MM’ - to make automatic ,
since none of it ever changes
anneal.o: anneal.cc anneal.h port.h delay.h physical.h common.h \
config.h featuredesire.h pclass.h virtual.h maps.h score.h \
solution.h vclass.h ${MAKEFILE_IN}

assign.o: assign.cc port.h common.h config.h delay.h physical.h \
featuredesire.h virtual.h vclass.h pclass.h score.h solution.h \
maps.h anneal.h ${MAKEFILE_IN}

config.o: config.cc config.h ${MAKEFILE_IN}
featuredesire.o: featuredesire.cc featuredesire.h common.h \
config.h ${MAKEFILE_IN}

78

parse_ptop.o: parse_ptop.cc port.h delay.h physical.h common.h \
config.h featuredesire.h parser.h ${MAKEFILE_IN}

parse_top.o: parse_top.cc port.h common.h config.h vclass.h \
delay.h physical.h featuredesire.h virtual.h parser.h anneal.h \
pclass.h ${MAKEFILE_IN}

parser.o: parser.cc parser.h port.h ${MAKEFILE_IN}
pclass.o: pclass.cc port.h common.h config.h delay.h physical.h \
featuredesire.h virtual.h pclass.h ${MAKEFILE_IN}

score.o: score.cc port.h common.h config.h vclass.h delay.h \
physical.h featuredesire.h virtual.h pclass.h score.h \
/usr/include/math.h ${MAKEFILE_IN}

solution.o: solution.cc solution.h port.h delay.h physical.h \
common.h config.h featuredesire.h virtual.h maps.h vclass.h \
${MAKEFILE_IN}

vclass.o: vclass.cc port.h common.h config.h vclass.h delay.h \
physical.h featuredesire.h virtual.h ${MAKEFILE_IN}

79

Appendix B. Virtual Topology and Testbed Resource Input Files

This appendix describes the format of the .ptop and .top text files that are inputs

for assign. The .ptop text file defines the set of available testbed resources and is

described in the first section. The second section outlines the structure of .top file

that specifies the SF virtual topologies. The .ptop and .top file format descriptions

are from [31], a readme file included with the assign source code. Otter visualizations

for the 10, 50, 100 and 1000-node SF virtual topologies are also provided.

B.1 Set of Available Testbed Resources (.ptop file)

Each line in the .ptop file describes either a pnode or a plink. Lines describing pnodes

are in the format:

node <node> <types> [- <features>]

<node> is the string identifier of the pnode.

<types> is a space-separated list of <type>:<number>.

<type> is the string identifier for the vnode types this pnode can host. “switch”

is a special identifier that indicates the vnode type is a network switch.

<number> is the number of vnodes of the particular type this pnode can host.

<features> is a space-separated list of <feature>:<cost>.

<feature> is the string identifier of the feature.

<cost> is the cost of the feature being wasted.

Lines designating plinks are in the following format:

link <link> <src>[:<smac>] <dst>[:<dmac>] <bw> <delay> <loss> <num>

<type>

<link> is the string identifier for the plink.

<src>,<dst> are source and destination pnodes.

<smac>,<dmac> are optional arguments that are medium access control addresses or
other strings to distinguish pnode ports. If omitted, the string “(null)” is used. These
arguments are not present on interswitch plinks.

<bw>,<delay>,<loss> are the characteristics of the plink.

80

<num> is the number of identical plinks between source and destination pnodes.

<type> is the string identifier for the plink type.

Listing B.1 shows a truncated version of the .ptop text file, as the entire file is

over 3,400 lines. Pnodes are either network switches or PC nodes in this .ptop file.

Plinks are either gigabit ethernet links connecting PC nodes to PC network switches

or ten-gigabit ethernet links connecting PC network switches to the master network

switch. The truncated listing details all the switch nodes, all the interswitch links, two

examples of the 525 PC node descriptions and three PC node link samples. Seven PC

network switches, labeled “aswitch2” through “aswitch8”, interconnect the testbed

PC nodes. One master network switch, “aswitch1”, connects the seven PC network

switches together. All PC network switches connect to the master network switch

by a single ten-gigabit ethernet link. Each PC node connects to its respective PC

network switch by multiple gigabit ethernet links. PC nodes “apc2-1” and “apc2-6”

are shown. Each of the PC nodes can host one “pc” or two “vm” vnodes. All the

links of both PC nodes connect to PC network switch 2, labeled “aswitch2”. The

number of gigabit links per PC node and the network switches they connect to are

listed in Table 3.1. Nomenclature such as “aswitch2” and “aswitch8” correspond to

Network Switches 2 and 8 in Table 3.1. Similarly, “apc2-1” and “apc2-6” correspond

to PC Nodes 1 and 6.

Listing B.1: Truncated .ptop File
node aswitch1 switch :1
node aswitch2 switch :1
node aswitch3 switch :1
node aswitch4 switch :1
node aswitch5 switch :1
node aswitch6 switch :1
node aswitch7 switch :1
node aswitch8 switch :1

link link -aswitch1:aswitch2 aswitch1 aswitch2 10000000 0 0 1 ethernet
link link -aswitch1:aswitch3 aswitch1 aswitch3 10000000 0 0 1 ethernet
link link -aswitch1:aswitch4 aswitch1 aswitch4 10000000 0 0 1 ethernet
link link -aswitch1:aswitch5 aswitch1 aswitch5 10000000 0 0 1 ethernet
link link -aswitch1:aswitch6 aswitch1 aswitch6 10000000 0 0 1 ethernet
link link -aswitch1:aswitch7 aswitch1 aswitch7 10000000 0 0 1 ethernet
link link -aswitch1:aswitch8 aswitch1 aswitch8 10000000 0 0 1 ethernet

81

node apc2 -1 pc:1 delay :2 vm:2
link link -apc2 -1:eth1 -aswitch2:(null) apc2 -1:apc1/eth1 aswitch2:(null

) 1000000 0 0 1 ethernet
link link -apc2 -1:eth2 -aswitch2:(null) apc2 -1:apc1/eth2 aswitch2:(null

) 1000000 0 0 1 ethernet
.
.
link link -apc2 -1:eth20 -aswitch2:(null) apc2 -1:apc1/eth20 aswitch2:(

null) 1000000 0 0 1 ethernet

node apc2 -6 pc:1 delay :2 vm:2
link link -apc2 -6:eth1 -aswitch2:(null) apc2 -6:apc6/eth1 aswitch2:(null

) 1000000 0 0 1 ethernet
link link -apc2 -6:eth2 -aswitch2:(null) apc2 -6:apc6/eth2 aswitch2:(null

) 1000000 0 0 1 ethernet
.
.
link link -apc2 -6:eth15 -aswitch2:(null) apc2 -6:apc6/eth15 aswitch2:(

null) 1000000 0 0 1 ethernet

B.2 SF Virtual Topologies (.top files)

Similar to the .ptop file, lines in the .top file describe vnodes or vlinks. Lines can also

be used to identify fixed vnode assignments and vclasses. Lines describing vnodes are

in the format:

node <node> <type> [<desires>]

<node> is the string identifier for the vnode.

<type> is the string identifier for the vnode type.

<desires> is a space-separated list of <desire>:<weight>.

<desire> is a string identifier of the desire.

<weight> is the cost of not having the desire fulfilled. A weight ≥ 1.0 will result

in a violation if not fulfilled.

Lines describing vlinks are in the following format:

link <link> <src> <dst> <bw>[:<underbw>:<overbw>[:<weight>]]

<delay>[:<underdelay>:<overdelay>[:<weight>]]

<loss>[:<underloss>:<overloss>[:<weight>]]

<rbw>[:<underbw>:<overbw>[:<weight>]]

82

<rdelay>[:<underdelay>:<overdelay>[:<weight>]]

<rloss>[:<underloss>:<overloss>[:<weight>]]

<nodelay|mustdelay> <emulated> <type>

<bw>, <delay> and <loss> are the characteristics of the vlink. <type> is the string

identifier for the vlink type. The reminder of the arguments are optional delta argu-

ments that describe the range of error tolerance in the assignment (e.g., how far under

and over the assignment can be by a given value). A value of 0 is the default and a

value of -1 indicates that best effort is tolerable. The weights are optional floating

point values that allow the user to specify the relative importance of the parameters.

The default is 1. A user can also specify reverse delay characteristics. If these are

omitted, the normal delay characteristics revert to the default. A <nodelay> value

indicates the vlink should not be delayed. <mustdelay> indicates that vlink must be

delayed.

Lines used to define fixed vnodes are in the format:

fix-node <node> <physical node>

Lines used to describe vclasses are in the format:

make-vclass <name> <weight> <physical types...>

There are multiple steps necessary to create SF and random virtual topologies

in the format required by assign. The first step is to create either a BA SF or ER

random network topology using BRITE. Table B.1 shows the BRITE parameters used

to create both types of virtual topologies. A flat topology consisting of only one level

is used for all virtual topologies, as hierarchical complex networks are beyond the

scope of this research. BRITE governs the placement of the nodes in the topology

using the “HS” and “LS” parameters. “HS” is the size of plane the nodes are placed

on and “LS” is the number of squares that divide the “HS” plane. Both of these

values remain at the default, since the number of nodes and their degree are the

defining characteristics for SF and random networks, not node geographical location.

“Random” is selected as the node placement parameter for the same reason. “N” is

dependent on the virtual topology being created (e.g., “10” for the 10-node topology,

83

Table B.1: The BRITE parameters, their descrip-
tions and values used to create the SF and random
virtual topologies.

Parameter Description SF Random
Topology Type Flat or hierarchical topology 1 1

Level Current level in hierarchy AS ONLY AS ONLY
HS Size of 1 side of the plane 1000 1000
LS Size of 1 side of high-level square 100 100
N Number of nodes variable variable

Model Model type BA Waxman
alpha Waxman-specific exponent n/a 0.15
beta Waxman-specific exponent n/a 0.2

Node Placement How nodes are placed in the plane Random Random
m Number of links per new node 2 2

Growth Type How nodes join the topology Incremental Incremental
Pref. Conn Preference for higher degree nodes On None

BWdist Bandwidth assignment to links Constant Constant
MaxBW, MinBW Link bandwidth 1500 1500

“50” for the 50-node topology, etc.) and two links per new node is selected to keep

the number of links in the resulting topology to a reasonable amount.

As an example, Listing B.2 shows the BRITE output file for the 10-node SF

virtual topology. The first half of the file is the node section. Node identifiers, carte-

sian coordinates, degree and other information is presented here. The first column,

consisting of node identifiers, is the only information pertinent for the development

of the .top file from the node section. The second part of the BRITE file is the edge

section. Edge identifiers, source and destination nodes, Euclidean length, bandwidth

and propagation delay is presented here. The first, second, third and sixth columns

are necessary from this section to build the .top file. These columns are the edge

identifiers, source node, destination node and bandwidth, respectively.

Listing B.2: BRITE Output File for the 10-node SF Virtual Topology

Topology: (10 Nodes , 17 Edges)
Model (4 - ASBarabasi): 10 1000 100 1 2 1 1500.0 1500.0

Nodes : (10)
0 477 580 2 2 0 AS_NODE

84

1 381 659 2 2 1 AS_NODE
2 2 69 7 7 2 AS_NODE
3 930 184 3 3 3 AS_NODE
4 216 71 2 2 4 AS_NODE
5 591 113 2 2 5 AS_NODE
6 513 923 2 2 6 AS_NODE
7 379 683 4 4 7 AS_NODE
8 691 849 5 5 8 AS_NODE
9 270 417 5 5 9 AS_NODE

Edges : (17)
0 2 4 214.00 0.71 1500.0 2 4 E_AS U
1 2 9 439.23 1.46 1500.0 2 9 E_AS U
2 4 9 350.18 1.16 1500.0 4 9 E_AS U
3 8 2 1040.73 3.47 1500.0 8 2 E_AS U
4 8 9 603.21 2.01 1500.0 8 9 E_AS U
5 6 2 995.20 3.31 1500.0 6 2 E_AS U
6 6 9 561.32 1.87 1500.0 6 9 E_AS U
7 1 2 701.24 2.33 1500.0 1 2 E_AS U
8 1 9 266.24 0.88 1500.0 1 9 E_AS U
9 3 2 935.09 3.11 1500.0 3 2 E_AS U
10 3 8 706.64 2.35 1500.0 3 8 E_AS U
11 7 2 720.50 2.40 1500.0 7 2 E_AS U
12 7 8 353.41 1.17 1500.0 7 8 E_AS U
13 5 7 608.14 2.02 1500.0 5 7 E_AS U
14 5 3 346.35 1.15 1500.0 5 3 E_AS U
15 0 8 343.73 1.14 1500.0 0 8 E_AS U
16 0 7 142.17 0.47 1500.0 0 7 E_AS U

The vnodes created by the BRITE output files require type specification, either

“pc” or “vm”, the two types supported by the pnodes in the .ptop file. The “pc” type

represents a vnode that consumes large amounts of computing resources and therefore

can only be mapped one-to-one onto a given pnode. “vm” is a vnode type that requires

substantially less computing resources, hence two can be multiplexed onto any single

pnode. Table B.2 indicates which of the vnodes are specified as type “pc”. The

remainder of the vnodes in the .top files are specified as “vm”. In topologies greater

than ten nodes, “vm” vnodes outnumber “pc” vnodes to ensure a physical solution

can be found with available testbed resources. The original bandwidth specification

for all vlinks in the BRITE topologies is 1500 kilobits per second. A portion of

these vlinks, listed in Table B.2, are increased to 100000 kilobits to represent link

variation in actual workloads submitted to Emulab. In all virtual topologies, the

85

Table B.2: Vnode and vlink modifications made to SF virtual
topologies produced by BRITE. The second column indicates which
vnodes are specified as type “pc”. The remaining vnodes in the .top
file are designated as type “vm”. The third column indicates how
many vlinks are increased from 1500 to 10000 kilobits per second.
The vlinks changed are the ones at the end of the .top files.

Virtual Vnodes Specified Total Number Vlinks Increased
Topology as pc of Vlinks to 100000

10 0 through 4 17 last 8
20 0 through 9 37 last 17
30 0 through 9 57 last 27
40 0 through 9 77 last 37
50 0 through 9 97 last 47
60 0 through 9 117 last 47
70 0 through 9 137 last 47
80 0 through 9 157 last 47
90 0 through 9 177 last 47
100 0 through 9 197 last 47
200 0 through 9 397 last 47
300 0 through 9 597 last 47
400 0 through 9 797 last 47
500 0 through 9 997 last 47
600 0 through 9 1,197 last 47
700 0 through 9 1,397 last 47
800 0 through 9 1,597 last 47
900 0 through 9 1,797 last 47
1000 0 through 9 1,997 last 47

aggregate bandwidth of all vlinks is less than ten gigabits per second, ensuring a

physical topology solution is possible even if all vlinks are mapped through the same

inter-switch plink. This represents a worst-case scenario in vlink assignment and

limited the number of vlinks that could be increased to 100000 kilobits per second in

the 1000-node virtual topology. Additionally, the bandwidth for any single vlink is

1500 or 100000 kilobits per second, ensuring any one vlink cannot saturate a single

PC node plink. All PC node plinks have a bandwidth of one gigabit per second.

Listing B.3 shows the entire .top text file for the 10-node SF virtual topology

created using BRITE. Due to their length, the other .top files are not included, but

86

Table B.3: Vnode and vlink modifications made to random virtual
topologies produced by BRITE. The second column indicates which
vnodes are specified as type “pc”. The remaining vnodes in the .top
file are designated as type “vm”. The third column indicates how
many vlinks are increased from 1500 to 10000 kilobits per second.
The vlinks changed are the ones at the end of the .top files.

Virtual Vnodes Specified Total Number Vlinks Increased
Topology as pc of Vlinks to 100000

10 0 through 4 20 last 10
20 0 through 9 40 last 20
30 0 through 9 60 last 30
40 0 through 9 80 last 40
50 0 through 9 100 last 50
60 0 through 9 120 last 50
70 0 through 9 140 last 50
80 0 through 9 160 last 50
90 0 through 9 180 last 50
100 0 through 9 200 last 50
200 0 through 9 400 last 50
300 0 through 9 600 last 50
400 0 through 9 800 last 50
500 0 through 9 1,000 last 50
600 0 through 9 1,200 last 50
700 0 through 9 1,400 last 50
800 0 through 9 1,600 last 50
900 0 through 9 1,800 last 50
1000 0 through 9 2,000 last 50

can be recreated with the information provided in this section. The final modification

to the .top file is the change in vlink identifier. The original BRITE numbering scheme

is changed to an identifier composed of the source and destination nodes (e.g., vlink

“0” is changed to vlink “linksimple/link2-4” where two is the source vnode and four

is the destination vnode).

Listing B.3: Entire .top File for the 10-node SF Virtual Topology
node 0 pc
node 1 pc
node 2 pc
node 3 pc
node 4 pc
node 5 vm

87

node 6 vm
node 7 vm
node 8 vm
node 9 vm
link linksimple/link2 -4 2 4 1500 0 0 ethernet
link linksimple/link2 -9 2 9 1500 0 0 ethernet
link linksimple/link4 -9 4 9 1500 0 0 ethernet
link linksimple/link8 -2 8 2 1500 0 0 ethernet
link linksimple/link8 -9 8 9 1500 0 0 ethernet
link linksimple/link6 -2 6 2 1500 0 0 ethernet
link linksimple/link6 -9 6 9 1500 0 0 ethernet
link linksimple/link1 -2 1 2 1500 0 0 ethernet
link linksimple/link1 -9 1 9 1500 0 0 ethernet
link linksimple/link3 -2 3 2 100000 0 0 ethernet
link linksimple/link3 -8 3 8 100000 0 0 ethernet
link linksimple/link7 -2 7 2 100000 0 0 ethernet
link linksimple/link7 -8 7 8 100000 0 0 ethernet
link linksimple/link5 -7 5 7 100000 0 0 ethernet
link linksimple/link5 -3 5 3 100000 0 0 ethernet
link linksimple/link0 -8 0 8 100000 0 0 ethernet
link linksimple/link0 -7 0 7 100000 0 0 ethernet

88

Appendix C. Data

This appendix contains the measured data from the first 20 trials of the experiments.

Tables C.1 through C.10 show the execution time and objective function score results

for both search algorithms when the 10 to 100-node random virtual topologies are

mapped to the original set of testbed resources. Tables C.20 through C.29 show the

results when the 10 to 100-node SF virtual topologies are mapped to the original set

of testbed resources.

Tables C.11 through C.19 show the results when the 200 to 1000-node random

virtual topologies (altered to pass assign prechecks) are mapped to the second set

of testbed resources. Tables C.30 through C.38 show the results when the 200 to

1000-node SF virtual topologies are mapped to the second set of testbed resources.

The second set of testbed resources is developed because no valid physical topology

solution exists for the 200 to 1000-node random and SF virtual topologies using the

original set of testbed resources and one-to-one link resolutions (see Section 4.2).

89

Table C.1: Measured data for the 10-node random virtual topology.

Search
Violations Score Time

Total Iterations Random
Algorithm Iterations to Best Seed

SA 0 3.9 1.56844 36000 7184 127
SA 0 3.9 1.68774 39000 4814 254
SA 0 3.9 1.6019 37000 8299 381
SA 0 3.9 1.64446 38000 7622 508
SA 0 3.9 1.62702 38000 6848 635
SA 0 3.9 1.63375 38000 4082 762
SA 0 3.9 1.75976 40000 7705 889
SA 0 3.9 1.78881 42000 4402 1016
SA 0 3.9 1.69146 39000 8921 1143
SA 0 3.9 1.71644 39000 7182 1270
SA 0 3.9 2.0218 46000 6451 1397
SA 0 3.9 1.74369 40000 3383 1524
SA 0 3.9 1.76719 41000 7759 1651
SA 0 3.9 1.62583 38000 7020 1778
SA 0 3.9 1.61964 37000 8870 1905
SA 0 3.9 1.77459 41000 8510 2032
SA 0 3.4 1.78047 42000 35813 2159
SA 0 3.9 1.54453 36000 8357 2286
SA 0 3.9 1.80411 41000 2060 2413
SA 0 3.9 1.74001 40000 2034 2540
TS 0 3.9 0.315629 11395 6328 127
TS 0 4.4 0.321119 11681 684 254
TS 0 4.4 0.300928 11427 969 381
TS 0 4.4 0.308338 11535 5036 508
TS 0 3.9 0.319004 11723 1218 635
TS 0 4.4 0.318233 11935 759 762
TS 0 4.4 0.314141 11790 10758 889
TS 0 3.9 0.310395 11518 6725 1016
TS 0 4.4 0.324303 11850 84 1143
TS 0 3.9 0.312626 11552 175 1270
TS 0 4.4 0.322075 11755 4552 1397
TS 0 4.4 0.301234 11279 59 1524
TS 0 3.9 0.316211 11714 2313 1651
TS 0 4.4 0.316222 11384 7378 1778
TS 0 3.9 0.323637 11546 98 1905
TS 0 4.4 0.312331 11414 9383 2032
TS 0 4.4 0.319072 11566 195 2159
TS 0 3.9 0.312077 11513 1164 2286
TS 0 4.6 0.320933 11882 3992 2413
TS 0 4.4 0.324541 11881 2708 2540

90

Table C.2: Measured data for the 20-node random virtual topology.

Search
Violations Score Time

Total Iterations Random
Algorithm Iterations to Best Seed

SA 0 6.1 2.15324 50000 41442 127
SA 0 6.6 1.81116 43000 14484 254
SA 0 6.6 1.698 40000 11812 381
SA 0 6.6 1.97506 46000 15118 508
SA 0 6.6 1.82943 43000 16541 635
SA 0 6.6 1.80088 42000 13279 762
SA 0 6.6 1.97695 46000 14688 889
SA 0 6.1 2.23101 51000 40784 1016
SA 0 6.6 1.40602 33000 15603 1143
SA 0 6.6 2.01113 47000 16620 1270
SA 0 6.1 2.02476 47000 36518 1397
SA 0 6.6 2.14878 50000 19390 1524
SA 0 6.1 2.05703 48000 35566 1651
SA 0 6.1 2.96138 67000 31169 1778
SA 0 6.6 2.36063 54000 11475 1905
SA 0 6.6 1.70081 40000 13300 2032
SA 0 6.6 1.48836 35000 10996 2159
SA 0 6.6 2.37055 55000 19036 2286
SA 0 6.6 2.14435 50000 15023 2413
SA 0 6.6 2.48568 58000 16571 2540
TS 0 13.3 0.531437 21874 15146 127
TS 0 11.2 0.530389 21777 21744 254
TS 0 9.94 0.53865 21892 6081 381
TS 0 9.44 0.537806 21976 9818 508
TS 0 6.8 0.533129 21913 16822 635
TS 0 12.72 0.533348 21828 11349 762
TS 0 9.26 0.533993 21816 17707 889
TS 0 10.4 0.55103 22282 19221 1016
TS 0 9.26 0.522243 21820 12711 1143
TS 0 9.06 0.541307 22185 3748 1270
TS 0 9.82 0.533998 21926 19851 1397
TS 0 10.2 0.529982 21778 15657 1524
TS 0 11.58 0.531412 21873 21546 1651
TS 0 11.16 0.52176 21357 2061 1778
TS 0 12.54 0.538586 22030 5800 1905
TS 0 9.06 0.538386 22016 13886 2032
TS 0 9.44 0.537849 22088 20020 2159
TS 0 9.06 0.541767 21876 12683 2286
TS 0 11.16 0.534206 21694 20660 2413
TS 0 6.8 0.52776 21887 18841 2540

91

Table C.3: Measured data for the 30-node random virtual topology.

Search
Violations Score Time

Total Iterations Random
Algorithm Iterations to Best Seed

SA 0 8.4 2.0925 49000 21777 127
SA 0 8.4 1.55994 38000 18395 254
SA 0 8.4 1.88089 45000 18872 381
SA 0 8.4 2.13052 50000 17818 508
SA 0 8.4 2.13774 51000 19002 635
SA 0 8.4 1.81995 44000 19543 762
SA 0 8.4 2.05615 50000 21971 889
SA 0 8.4 1.87829 45000 18748 1016
SA 0 8.4 1.84629 44000 12197 1143
SA 0 8.4 1.46626 35000 14180 1270
SA 0 8.4 2.01955 48000 18522 1397
SA 0 8.4 2.17754 51000 19830 1524
SA 0 8.4 2.08118 49000 23449 1651
SA 0 8.4 1.93685 46000 25432 1778
SA 0 8.4 1.75991 42000 17293 1905
SA 0 8.4 2.07622 49000 25075 2032
SA 0 8.4 2.16359 51000 23720 2159
SA 0 7.9 2.244 52000 24205 2286
SA 0 8.4 2.24284 53000 19063 2413
SA 0 8.4 2.08482 49000 20935 2540
TS 0 13.84 0.785672 32683 12363 127
TS 0 11.06 0.771221 31990 26926 254
TS 0 16.06 0.76937 31804 28722 381
TS 0 17.44 0.771819 32109 2515 508
TS 0 16.22 0.776468 32146 32078 635
TS 0 13.2 0.763365 31924 31877 762
TS 0 12.5 0.761945 31809 31746 889
TS 0 14.22 0.764071 31858 30850 1016
TS 0 15.22 0.762834 32053 30991 1143
TS 0 13.76 0.762476 31924 31882 1270
TS 0 13.58 0.785012 32519 31482 1397
TS 0 16.92 0.752228 31661 30624 1524
TS 0 14.84 0.76694 32087 19841 1651
TS 0 14.36 0.770273 32018 26953 1778
TS 0 13.76 0.758866 31788 23672 1905
TS 0 13.58 0.772283 32347 13179 2032
TS 0 15.16 0.760435 31752 29699 2159
TS 0 16.42 0.782152 32050 24983 2286
TS 0 16.1 0.770897 32029 19929 2413
TS 0 16.3 0.763158 32014 30953 2540

92

Table C.4: Measured data for the 40-node random virtual topology.

Search
Violations Score Time

Total Iterations Random
Algorithm Iterations to Best Seed

SA 0 10.2 2.22941 52000 21608 127
SA 0 10.2 2.13313 50000 22580 254
SA 0 10.2 2.23211 52000 22481 381
SA 0 10.2 1.97763 47000 17231 508
SA 0 10.2 1.97163 46000 21456 635
SA 0 10.2 1.18938 29000 24472 762
SA 0 10.2 1.85472 44000 24523 889
SA 0 10.2 2.22812 53000 27616 1016
SA 0 10.2 1.75657 42000 25436 1143
SA 0 10.2 1.811 43000 25427 1270
SA 0 10.2 2.00094 47000 20281 1397
SA 0 10.2 2.23606 52000 25972 1524
SA 0 10.2 1.89938 45000 18505 1651
SA 0 10.2 2.1818 51000 20118 1778
SA 0 10.2 1.85594 44000 25442 1905
SA 0 10.2 1.72778 41000 22965 2032
SA 0 10.2 1.8033 43000 28956 2159
SA 0 10.2 2.06377 48000 24436 2286
SA 0 10.2 2.08028 48000 24398 2413
SA 0 10.2 1.89801 45000 23121 2540
TS 0 21.12 1.02738 41834 18501 127
TS 0 20.7 1.02771 42073 39048 254
TS 0 23.06 1.02752 42032 15703 381
TS 0 22.72 1.02658 42527 42488 508
TS 0 20.36 1.02832 42044 42034 635
TS 0 19.66 1.0137 41901 36822 762
TS 0 20.32 1.02769 42256 37186 889
TS 0 21.76 1.01766 42114 39021 1016
TS 0 19.8 1.00618 41984 41953 1143
TS 0 20.9 1.02261 41938 36810 1270
TS 0 17.9 1.02185 41878 33769 1397
TS 0 21.88 1.0397 42318 35206 1524
TS 0 22.72 1.03912 42571 38539 1651
TS 0 22.14 1.0272 41925 27753 1778
TS 0 22.16 1.0341 42588 41583 1905
TS 0 21.02 1.02033 41806 41769 2032
TS 0 22.84 1.03898 42945 24818 2159
TS 0 22.28 1.01304 41930 24655 2286
TS 0 24.36 1.01213 41592 29475 2413
TS 0 26.68 1.01938 41807 40794 2540

93

Table C.5: Measured data for the 50-node random virtual topology.

Search
Violations Score Time

Total Iterations Random
Algorithm Iterations to Best Seed

SA 0 12 1.74443 43000 36946 127
SA 0 12.2 1.32247 33000 24735 254
SA 0 15.22 1.75129 45000 22320 381
SA 0 12 1.61834 40000 27330 508
SA 0 16.42 1.16845 31000 21259 635
SA 0 12.2 1.33618 34000 32973 762
SA 0 12 1.81136 45000 28703 889
SA 0 17.94 0.983013 26000 21691 1016
SA 0 12.2 1.30335 33000 29282 1143
SA 0 12 2.00477 49000 35601 1270
SA 0 12.2 1.66512 43000 23634 1397
SA 0 14.46 1.10558 28000 21452 1524
SA 0 12 2.07901 50000 26890 1651
SA 0 12 1.38736 35000 27450 1778
SA 0 12 1.87182 47000 43095 1905
SA 0 12 1.51578 38000 33327 2032
SA 0 12 1.37811 35000 24601 2159
SA 0 12 2.41203 58000 30588 2286
SA 0 12.2 1.76681 44000 23593 2413
SA 0 12 1.58525 39000 24452 2540
TS 0 28.72 1.24255 52289 42171 127
TS 0 28.28 1.2474 52205 46140 254
TS 0 23.82 1.23974 52027 36856 381
TS 0 26.06 1.25267 52247 50200 508
TS 0 30.66 1.24936 52057 32855 635
TS 0 32.64 1.24916 52594 45475 762
TS 0 29.08 1.25084 52292 42150 889
TS 0 29.78 1.22621 51901 39846 1016
TS 0 23.36 1.23522 51899 31697 1143
TS 0 27.3 1.25128 52052 45992 1270
TS 0 28.36 1.24474 52211 47165 1397
TS 0 28.26 1.24062 52026 16700 1524
TS 0 30.46 1.25695 52045 31808 1651
TS 0 30.56 1.23893 52033 30792 1778
TS 0 26.04 1.25325 52555 50512 1905
TS 0 26.1 1.25345 52335 44222 2032
TS 0 25.16 1.25548 52619 36374 2159
TS 0 24.7 1.2337 52035 46946 2286
TS 0 25.72 1.24083 52131 43040 2413
TS 0 22.82 1.24256 52565 44454 2540

94

Table C.6: Measured data for the 60-node random virtual topology.

Search
Violations Score Time

Total Iterations Random
Algorithm Iterations to Best Seed

SA 0 16.26 1.58316 40000 23816 127
SA 0 28.48 0.946807 25000 17553 254
SA 0 16.46 1.41667 36000 27195 381
SA 0 19.16 1.84582 48000 36086 508
SA 0 13.8 1.97871 49000 46682 635
SA 0 16.64 1.24574 32000 28242 762
SA 0 16.64 1.44258 37000 25228 889
SA 0 14 0.994978 26000 21920 1016
SA 0 13.8 1.77906 45000 33643 1143
SA 0 13.8 1.92122 47000 40709 1270
SA 0 14 1.43434 36000 27797 1397
SA 0 13.8 1.83981 46000 37259 1524
SA 0 13.8 1.79595 45000 34104 1651
SA 0 19.94 1.25175 32000 17168 1778
SA 0 26.76 0.91948 24000 22013 1905
SA 0 13.8 1.3709 35000 31024 2032
SA 0 13.8 1.53191 39000 34253 2159
SA 0 28.46 1.02124 27000 16448 2286
SA 0 13.8 1.84639 46000 34095 2413
SA 0 13.8 1.74185 44000 29333 2540
TS 0 34.02 1.47791 62006 61941 127
TS 0 32.16 1.48046 61841 56770 254
TS 0 36.4 1.48635 62101 56068 381
TS 0 30.34 1.49368 62401 37163 508
TS 0 32.4 1.49563 62099 53975 635
TS 0 40.18 1.47315 62117 34877 762
TS 0 31.14 1.48377 62448 31112 889
TS 0 32.6 1.4773 62118 60050 1016
TS 0 33.84 1.50088 62419 52340 1143
TS 0 36.18 1.47672 62547 52431 1270
TS 0 32.66 1.49036 62122 53019 1397
TS 0 34.86 1.49336 62218 61171 1524
TS 0 28.9 1.48183 62239 46057 1651
TS 0 31.58 1.49709 62592 61521 1778
TS 0 28.68 1.49749 62355 61308 1905
TS 0 34.32 1.48128 62248 43076 2032
TS 0 35.26 1.47516 62064 56029 2159
TS 0 35.06 1.48398 62083 60016 2286
TS 0 30.64 1.48092 62403 57297 2413
TS 0 34.58 1.48066 62152 59068 2540

95

Table C.7: Measured data for the 70-node random virtual topology.

Search
Violations Score Time

Total Iterations Random
Algorithm Iterations to Best Seed

SA 0 28.06 1.47159 39000 32961 127
SA 0 25.58 1.21768 32000 28840 254
SA 1 16.36 0.916236 25000 23043 381
SA 0 15.6 1.82047 47000 33357 508
SA 0 33.02 1.35849 36000 20604 635
SA 0 22.62 1.35666 36000 32225 762
SA 0 40.78 1.12019 30000 20781 889
SA 0 22.36 1.01838 27000 25589 1016
SA 1 22.48 1.1945 32000 26272 1143
SA 1 35.42 0.691871 19000 17636 1270
SA 0 20.84 1.50316 39000 28598 1397
SA 0 27.06 1.41383 37000 24269 1524
SA 0 19.4 1.48732 39000 27736 1651
SA 1 26.14 0.784745 21000 18163 1778
SA 1 21.4 1.30595 35000 33560 1905
SA 0 15.6 1.77231 46000 43096 2032
SA 0 31.6 1.15954 32000 22436 2159
SA 1 26.04 0.920526 25000 19294 2286
SA 0 24.9 1.53938 41000 27424 2413
SA 0 25.08 1.7332 46000 28442 2540
TS 0 40.8 1.70228 72145 50969 127
TS 0 38.56 1.70554 72632 71559 254
TS 0 36.46 1.69686 72349 72295 381
TS 0 38.06 1.71238 72292 56130 508
TS 0 35.84 1.70108 72397 72319 635
TS 0 46.24 1.6949 72362 69348 762
TS 0 43.9 1.72665 72449 56395 889
TS 0 41.78 1.69921 72284 68251 1016
TS 0 38.38 1.70239 72181 72133 1143
TS 0 39.04 1.71361 72740 71724 1270
TS 0 39.02 1.70876 72235 36895 1397
TS 0 45.16 1.71006 72348 69279 1524
TS 0 43.44 1.69995 72226 67145 1651
TS 0 42.3 1.68784 71986 69960 1778
TS 0 38.7 1.71459 72793 59696 1905
TS 0 42.26 1.70382 72106 72086 2032
TS 0 35.96 1.69838 72471 55377 2159
TS 0 37.6 1.70823 72039 69967 2286
TS 0 39.78 1.69995 72758 68721 2413
TS 0 49.64 1.69831 72363 69324 2540

96

Table C.8: Measured data for the 80-node random virtual topology.

Search
Violations Score Time

Total Iterations Random
Algorithm Iterations to Best Seed

SA 0 19.86 1.94566 47000 39029 127
SA 0 17.6 2.06504 50000 34027 254
SA 0 17.4 1.9932 48000 45913 381
SA 0 17.6 2.27296 54000 38063 508
SA 0 17.4 2.36893 56000 46020 635
SA 0 19.86 1.89973 46000 32023 762
SA 0 17.4 2.50716 58000 45219 889
SA 0 17.4 2.59908 61000 43715 1016
SA 0 17.4 2.02663 48000 38306 1143
SA 0 17.4 2.16053 52000 36910 1270
SA 0 17.4 1.99344 47000 45004 1397
SA 0 17.4 2.61277 61000 41425 1524
SA 0 17.6 1.82663 44000 42972 1651
SA 0 17.4 2.32419 55000 40389 1778
SA 0 17.4 2.15358 51000 33278 1905
SA 0 24.24 1.64099 40000 38979 2032
SA 0 17.4 2.46558 58000 40701 2159
SA 0 17.4 1.54542 38000 35979 2286
SA 0 17.4 2.21246 52000 36530 2413
SA 0 17.4 2.33284 56000 43056 2540
TS 0 49.74 1.93569 82191 81181 127
TS 0 48.3 1.92021 81937 76903 254
TS 0 48.42 1.92079 82256 78209 381
TS 0 49.72 1.93698 82379 52204 508
TS 0 47.96 1.93364 82380 52219 635
TS 0 51.52 1.9226 82363 52181 762
TS 1 46.02 1.94323 82904 74828 889
TS 0 48.3 1.92848 82317 66255 1016
TS 0 48.82 1.92749 82518 81494 1143
TS 0 51.72 1.9347 82504 80500 1270
TS 0 40.6 1.94246 82604 82542 1397
TS 0 46.08 1.92079 82141 66972 1524
TS 0 44.94 1.90885 82218 65113 1651
TS 0 43.62 1.94395 82672 67588 1778
TS 0 54.7 1.90653 82014 63898 1905
TS 0 45.18 1.92219 81989 76931 2032
TS 0 43.08 1.92831 82236 79179 2159
TS 0 51.66 1.92696 82294 66185 2286
TS 0 44.38 1.93321 82714 71661 2413
TS 0 47.12 1.93429 82144 70042 2540

97

Table C.9: Measured data for the 90-node random virtual topology.

Search
Violations Score Time

Total Iterations Random
Algorithm Iterations to Best Seed

SA 2 37.9 0.930412 25920 23039 127
SA 2 34.22 1.64567 44280 25237 254
SA 3 39.52 1.08561 29160 27513 381
SA 1 30.52 1.22429 33480 27382 508
SA 3 43.38 1.12702 31320 19528 635
SA 0 27.92 1.51294 41040 32957 762
SA 2 44.9 0.847759 23760 17823 889
SA 3 48.9 1.04857 29160 20710 1016
SA 2 37.66 1.10992 30240 22327 1143
SA 1 35.3 1.27614 34560 29432 1270
SA 1 41.44 1.21178 33480 26181 1397
SA 2 41.12 1.22577 33480 25783 1524
SA 2 37.88 1.08432 30240 28163 1651
SA 2 50.8 1.16363 32400 20842 1778
SA 2 40.98 0.958171 25920 24180 1905
SA 1 35.38 1.60457 43200 29283 2032
SA 1 29.9 1.46043 38880 29844 2159
SA 1 36.64 1.42685 38880 37275 2286
SA 2 33.56 1.44576 39960 38018 2413
SA 2 55.24 1.13602 31320 25061 2540
TS 0 51 2.31737 99944 75988 127
TS 0 52.76 2.3437 99283 93847 254
TS 0 54.28 2.33746 99658 90958 381
TS 0 54.48 2.31807 99385 92877 508
TS 0 49.72 2.35862 99968 60822 635
TS 0 57.98 2.3264 99797 88924 762
TS 0 57.34 2.32206 99384 93953 889
TS 0 52.4 2.3325 99566 95205 1016
TS 0 55.18 2.32481 99490 88653 1143
TS 0 54.18 2.33622 99363 91737 1270
TS 0 51.74 2.33301 99754 96450 1397
TS 1 56.62 2.33357 99420 92906 1524
TS 0 53.92 2.32872 99603 98521 1651
TS 0 51.24 2.31187 99841 99826 1778
TS 0 55.78 2.31789 99264 94894 1905
TS 0 50.78 2.34465 99428 98301 2032
TS 0 53.16 2.3105 99545 68026 2159
TS 1 54.54 2.32622 99166 93720 2286
TS 0 54.84 2.33996 99190 99165 2413
TS 0 55.24 2.33584 99586 77872 2540

98

Table C.10: Measured data for the 100-node random virtual topology.

Search
Violations Score Time

Total Iterations Random
Algorithm Iterations to Best Seed

SA 3 54.8 1.25373 34800 23202 127
SA 3 48.06 1.12932 31200 29077 254
SA 2 49 1.50756 40800 33707 381
SA 5 59.72 0.952909 26400 23172 508
SA 6 61.62 0.922998 26400 19491 635
SA 4 40.6 1.69928 46800 41024 762
SA 5 61.64 0.752772 21600 16794 889
SA 3 49.92 1.52017 42000 24337 1016
SA 1 49.2 1.08414 30000 20932 1143
SA 2 46.68 1.02347 28800 26282 1270
SA 2 47.2 1.3907 38400 33281 1397
SA 3 53.76 1.45623 39600 34584 1524
SA 4 52.38 1.24032 34800 29862 1651
SA 3 44.92 1.42988 39600 37662 1778
SA 6 48.44 1.10785 31200 26253 1905
SA 3 45.54 1.65743 45600 29850 2032
SA 3 49.94 1.12361 31200 27436 2159
SA 2 55.34 1.2769 34800 22944 2286
SA 7 57.6 0.838242 24000 20054 2413
SA 2 43.14 1.69799 45600 35972 2540
TS 1 67.12 2.8491 122127 119726 127
TS 1 65.34 2.84045 122467 114044 254
TS 1 69.5 2.86128 122495 118893 381
TS 0 66.36 2.8666 122595 122581 508
TS 1 63.28 2.81427 122044 120839 635
TS 0 58.12 2.84466 122116 112472 762
TS 1 64.9 2.85422 122801 113129 889
TS 0 64.32 2.82115 122364 121163 1016
TS 1 63.44 2.85057 122202 107751 1143
TS 1 60.86 2.85952 122916 120466 1270
TS 0 62.94 2.8465 122409 121197 1397
TS 0 57.04 2.84324 122428 118747 1524
TS 1 68.14 2.85096 122195 122183 1651
TS 1 63.4 2.83581 122199 111344 1778
TS 1 65.68 2.84133 122174 107722 1905
TS 2 61.36 2.82713 122727 113060 2032
TS 1 68.24 2.83259 122053 79941 2159
TS 1 65.68 2.81893 122185 93284 2286
TS 2 60.2 2.84806 122149 88433 2413
TS 0 66 2.84435 122379 118778 2540

99

Table C.11: Measured data for the 200-node random virtual topology.

Search
Violations Score Time

Total Iterations Random
Algorithm Iterations to Best Seed

SA 0 38 0.060283 1000 775 127
SA 0 38.2 0.059768 1000 905 254
SA 0 38.2 0.059459 1000 626 381
SA 1 38.66 0.059963 1000 400 508
SA 0 38.2 0.061329 1000 419 635
SA 1 38.66 0.059463 1000 649 762
SA 0 38 0.059328 1000 200 889
SA 0 38.2 0.059391 1000 201 1016
SA 0 38.2 0.060106 1000 339 1143
SA 0 38.2 0.059017 1000 289 1270
SA 0 38.2 0.059984 1000 249 1397
SA 0 38.2 0.060218 1000 252 1524
SA 0 38.2 0.058667 1000 218 1651
SA 0 38 0.060212 1000 554 1778
SA 0 38.2 0.059307 1000 201 1905
SA 0 38 0.059652 1000 989 2032
SA 0 38.2 0.060037 1000 475 2159
SA 0 38.2 0.059229 1000 939 2286
SA 0 38.2 0.059207 1000 227 2413
SA 0 38.2 0.059456 1000 984 2540
TS 0 38 6.35722 205613 334 127
TS 0 38 6.24639 202454 1274 254
TS 0 38 6.32163 205523 268 381
TS 0 38 6.24611 202613 1072 508
TS 0 38 6.24326 202654 800 635
TS 0 38 6.29702 204501 1972 762
TS 0 38 6.30663 204575 200 889
TS 0 38 6.25391 202467 2820 1016
TS 0 38 6.22648 202289 728 1143
TS 0 38 6.25842 202631 213 1270
TS 0 38 6.26316 202461 2485 1397
TS 0 38 6.31219 205614 464 1524
TS 0 38 6.2888 202768 1245 1651
TS 0 38 6.24691 203525 2449 1778
TS 0 38 6.32546 205442 489 1905
TS 0 38 6.23778 202246 1886 2032
TS 0 38 6.35833 205615 403 2159
TS 0 38 6.32754 204598 436 2286
TS 0 38 6.32186 203588 300 2413
TS 0 38 6.24478 203061 2465 2540

100

Table C.12: Measured data for the 300-node random virtual topology.

Search
Violations Score Time

Total Iterations Random
Algorithm Iterations to Best Seed

SA 0 56.2 0.074043 1000 631 127
SA 4 58.04 0.074687 1000 536 254
SA 2 57.12 0.074886 1000 365 381
SA 0 56 0.074971 1000 300 508
SA 1 56.66 0.075209 1000 804 635
SA 2 56.92 0.073405 1000 300 762
SA 1 56.66 0.075666 1000 564 889
SA 1 56.66 0.074832 1000 593 1016
SA 1 56.66 0.07422 1000 730 1143
SA 3 57.58 0.074034 1000 966 1270
SA 0 56 0.075205 1000 300 1397
SA 2 57.12 0.076021 1000 402 1524
SA 2 56.92 0.074564 1000 300 1651
SA 1 56.66 0.075437 1000 992 1778
SA 1 56.66 0.075012 1000 906 1905
SA 0 56 0.076381 1000 927 2032
SA 2 57.12 0.07553 1000 866 2159
SA 4 58.04 0.074579 1000 554 2286
SA 0 56.2 0.074419 1000 322 2413
SA 0 56 0.074862 1000 420 2540
TS 0 56 10.8622 305982 2137 127
TS 0 56 10.9204 303467 1979 254
TS 0 56 10.7742 303837 1885 381
TS 0 56 10.7829 303965 300 508
TS 0 56 10.8385 304011 1544 635
TS 0 56 10.7443 303842 475 762
TS 0 56 10.8795 304589 2251 889
TS 0 56 10.8859 304138 1661 1016
TS 0 56 10.8401 303549 2913 1143
TS 0 56 10.8707 305061 1037 1270
TS 0 56 10.7999 306071 300 1397
TS 0 56 10.9036 306940 7621 1524
TS 0 56 10.8959 303514 3368 1651
TS 0 56 10.7512 303907 4080 1778
TS 0 56 10.8474 307025 8227 1905
TS 0 56 10.8886 306063 2087 2032
TS 0 56 10.7846 304010 2113 2159
TS 0 56 10.8464 305918 8252 2286
TS 0 56 10.8281 304069 429 2413
TS 0 56 10.9215 305981 7580 2540

101

Table C.13: Measured data for the 400-node random virtual topology.

Search
Violations Score Time

Total Iterations Random
Algorithm Iterations to Best Seed

SA 2 75.12 0.092939 1000 740 127
SA 1 74.46 0.09295 1000 400 254
SA 3 75.58 0.09452 1000 524 381
SA 2 74.92 0.094024 1000 695 508
SA 1 74.66 0.093599 1000 584 635
SA 1 74.46 0.093848 1000 679 762
SA 3 75.58 0.094454 1000 823 889
SA 3 75.58 0.093492 1000 410 1016
SA 2 75.12 0.093147 1000 565 1143
SA 0 74.2 0.094446 1000 662 1270
SA 6 76.96 0.093365 1000 404 1397
SA 1 74.66 0.094049 1000 995 1524
SA 1 74.46 0.092782 1000 400 1651
SA 3 75.58 0.094427 1000 994 1778
SA 6 76.96 0.093195 1000 475 1905
SA 2 75.12 0.093537 1000 668 2032
SA 1 74.66 0.094303 1000 523 2159
SA 7 77.22 0.094401 1000 400 2286
SA 4 76.04 0.094154 1000 975 2413
SA 1 74.66 0.092731 1000 792 2540
TS 0 74 16.3862 407234 11819 127
TS 0 74 16.2251 404856 10045 254
TS 0 74 16.2914 408187 14794 381
TS 0 74 16.276 405355 2771 508
TS 0 74 16.3349 404607 4971 635
TS 0 74 16.3656 407243 4144 762
TS 0 74 16.2676 405400 4847 889
TS 0 74 16.3104 408251 16152 1016
TS 0 74 16.225 404627 1604 1143
TS 0 74 16.1714 405108 3039 1270
TS 0 74 16.3225 406166 3861 1397
TS 0 74 16.3003 405115 9727 1524
TS 0 74 16.3272 408242 976 1651
TS 0 74 16.1768 403828 2887 1778
TS 0 74 16.1891 403936 2754 1905
TS 0 74 16.2964 406275 8902 2032
TS 0 74 16.2637 405483 1293 2159
TS 0 74 16.2194 403368 4212 2286
TS 0 74 16.3184 405228 8678 2413
TS 0 74 16.354 405173 2435 2540

102

Table C.14: Measured data for the 500-node random virtual topology.

Search
Violations Score Time

Total Iterations Random
Algorithm Iterations to Best Seed

SA 6 94.96 0.116826 1000 909 127
SA 9 96.34 0.118661 1000 980 254
SA 4 94.04 0.116565 1000 835 381
SA 4 93.84 0.115747 1000 500 508
SA 5 94.5 0.116753 1000 583 635
SA 6 94.96 0.117529 1000 962 762
SA 11 97.26 0.116763 1000 607 889
SA 4 93.84 0.116336 1000 500 1016
SA 4 94.04 0.11681 1000 546 1143
SA 6 94.96 0.116341 1000 950 1270
SA 11 97.26 0.119628 1000 888 1397
SA 5 94.3 0.116269 1000 500 1524
SA 4 93.84 0.115653 1000 500 1651
SA 3 93.58 0.116595 1000 597 1778
SA 7 95.42 0.116235 1000 618 1905
SA 6 94.96 0.11713 1000 599 2032
SA 8 95.68 0.115257 1000 500 2159
SA 7 95.42 0.118147 1000 762 2286
SA 5 94.5 0.118677 1000 930 2413
SA 5 94.5 0.116187 1000 658 2540
TS 0 92.2 22.2957 506635 6934 127
TS 0 92.2 22.2277 504738 127402 254
TS 0 92.2 22.3297 505522 59045 381
TS 0 92.2 22.3603 509365 12759 508
TS 0 92.2 22.3898 505999 33404 635
TS 0 92.2 22.3571 508288 34834 762
TS 0 92.2 22.4939 509507 73042 889
TS 0 92.2 22.2546 504311 95877 1016
TS 0 92.2 22.4726 508381 21802 1143
TS 0 92.2 22.3499 505792 55344 1270
TS 0 92.2 22.2555 505210 59753 1397
TS 0 92.2 22.3086 505923 34446 1524
TS 0 92.2 22.3661 505961 66530 1651
TS 0 92.2 22.2963 505365 9653 1778
TS 0 92.2 22.385 507256 69790 1905
TS 0 92.2 22.3742 509487 24943 2032
TS 0 92.2 22.4788 506477 16891 2159
TS 0 92.2 22.2521 505463 13835 2286
TS 0 92.2 22.3019 506244 42557 2413
TS 0 92.2 22.269 504756 35221 2540

103

Table C.15: Measured data for the 600-node random virtual topology.

Search
Violations Score Time

Total Iterations Random
Algorithm Iterations to Best Seed

SA 2 111.12 0.144297 1000 973 127
SA 6 112.96 0.144437 1000 610 254
SA 0 110 0.14544 1000 634 381
SA 9 114.34 0.145495 1000 707 508
SA 2 110.92 0.144784 1000 757 635
SA 2 111.12 0.144109 1000 811 762
SA 8 113.88 0.146355 1000 897 889
SA 6 112.76 0.144849 1000 600 1016
SA 1 110.46 0.143836 1000 600 1143
SA 8 113.68 0.14351 1000 600 1270
SA 3 111.58 0.145469 1000 796 1397
SA 2 110.92 0.143868 1000 600 1524
SA 0 110 0.144742 1000 600 1651
SA 3 111.38 0.14436 1000 600 1778
SA 3 111.58 0.144932 1000 733 1905
SA 1 110.46 0.14401 1000 600 2032
SA 0 110 0.145047 1000 766 2159
SA 13 116.18 0.143891 1000 627 2286
SA 0 110.2 0.144863 1000 786 2413
SA 3 111.58 0.144488 1000 833 2540
TS 0 110 29.1294 605444 8869 127
TS 0 110 29.1246 606206 4870 254
TS 0 110 29.1925 606022 8052 381
TS 0 110 29.3888 607288 5060 508
TS 0 110 29.1106 606025 5361 635
TS 0 110 29.1972 605692 4403 762
TS 0 110 29.1852 605825 6688 889
TS 0 110 29.1716 605820 9201 1016
TS 0 110 29.2877 609349 3331 1143
TS 0 110 29.2103 606444 10770 1270
TS 0 110 29.2205 606440 3901 1397
TS 0 110 29.1667 607427 5599 1524
TS 0 110 29.046 604608 600 1651
TS 0 110 29.2008 606070 3915 1778
TS 0 110 29.2698 608325 3827 1905
TS 0 110 29.1399 606256 1379 2032
TS 0 110 29.0269 604967 3174 2159
TS 0 110 29.1536 606978 11867 2286
TS 0 110 29.1767 605879 6061 2413
TS 0 110 29.1932 605787 2819 2540

104

Table C.16: Measured data for the 700-node random virtual topology.

Search
Violations Score Time

Total Iterations Random
Algorithm Iterations to Best Seed

SA 1 128.66 0.175748 1000 895 127
SA 4 129.84 0.177216 1000 700 254
SA 6 130.96 0.177854 1000 830 381
SA 2 128.92 0.175217 1000 700 508
SA 2 128.92 0.175825 1000 700 635
SA 10 132.6 0.174158 1000 700 762
SA 2 129.12 0.177823 1000 744 889
SA 4 129.84 0.176915 1000 700 1016
SA 5 130.5 0.178011 1000 805 1143
SA 6 130.76 0.174825 1000 700 1270
SA 1 128.46 0.178544 1000 911 1397
SA 2 129.12 0.178288 1000 828 1524
SA 2 129.12 0.176231 1000 780 1651
SA 3 129.38 0.177125 1000 700 1778
SA 6 130.76 0.175539 1000 700 1905
SA 4 129.84 0.176969 1000 700 2032
SA 6 130.96 0.177322 1000 708 2159
SA 0 128.2 0.178206 1000 704 2286
SA 4 130.04 0.17735 1000 982 2413
SA 0 128.2 0.176819 1000 719 2540
TS 0 128 36.6524 706238 6780 127
TS 0 128 36.5772 706662 7145 254
TS 0 128 36.5567 705335 19910 381
TS 0 128 36.6927 707115 5474 508
TS 0 128 36.5788 706202 4519 635
TS 0 128 36.7086 706245 7065 762
TS 0 128 36.5803 706437 3241 889
TS 0 128 36.5681 706121 9413 1016
TS 0 128 36.5612 706731 16874 1143
TS 0 128 36.6434 707007 14033 1270
TS 0 128 36.5602 706870 13526 1397
TS 0 128 36.6157 707418 18432 1524
TS 0 128 36.5709 706281 6087 1651
TS 0 128 36.657 708231 4890 1778
TS 0 128 36.7381 707359 7429 1905
TS 0 128 36.6449 707111 5541 2032
TS 0 128 36.5377 705329 2706 2159
TS 0 128 36.599 706777 3682 2286
TS 0 128 36.5992 706200 6884 2413
TS 0 128 36.6454 707078 9240 2540

105

Table C.17: Measured data for the 800-node random virtual topology.

Search
Violations Score Time

Total Iterations Random
Algorithm Iterations to Best Seed

SA 9 150.14 0.21419 1000 800 127
SA 4 147.84 0.214007 1000 800 254
SA 5 148.3 0.215668 1000 800 381
SA 9 150.34 0.215337 1000 927 508
SA 5 148.5 0.21626 1000 890 635
SA 5 148.5 0.216182 1000 957 762
SA 12 151.52 0.214648 1000 800 889
SA 6 148.96 0.21592 1000 825 1016
SA 8 149.88 0.212846 1000 830 1143
SA 10 150.8 0.215858 1000 920 1270
SA 8 149.68 0.215758 1000 800 1397
SA 8 149.68 0.213578 1000 800 1524
SA 3 147.58 0.215846 1000 956 1651
SA 10 150.8 0.216997 1000 839 1778
SA 5 148.5 0.213762 1000 831 1905
SA 5 148.5 0.214052 1000 958 2032
SA 5 148.3 0.214286 1000 800 2159
SA 14 152.64 0.213204 1000 964 2286
SA 6 148.96 0.215908 1000 806 2413
SA 12 151.52 0.215296 1000 800 2540
TS 0 146.2 44.7326 805705 293195 127
TS 0 146.2 44.758 807014 341582 254
TS 0 146.2 44.6575 807079 323924 381
TS 0 146.2 44.7888 806444 8375 508
TS 0 146.2 44.8306 807162 68420 635
TS 0 146.2 44.9243 805523 2224 762
TS 0 146.2 44.7039 806716 327244 889
TS 0 146.2 44.8484 807291 172023 1016
TS 0 146.2 44.5919 807127 27341 1143
TS 0 146.2 44.6075 807690 62518 1270
TS 0 146.2 44.5866 806202 144548 1397
TS 0 146.2 44.7466 807715 125025 1524
TS 0 146.2 44.7023 806105 229568 1651
TS 0 146.2 44.8195 810089 80339 1778
TS 0 146.2 44.5909 805549 227987 1905
TS 0 146.2 44.6546 806637 30518 2032
TS 0 146.2 44.732 806871 77016 2159
TS 0 146.2 44.6824 807176 141252 2286
TS 0 146.2 44.7054 806896 13081 2413
TS 0 146.2 44.7544 808040 12558 2540

106

Table C.18: Measured data for the 900-node random virtual topology.

Search
Violations Score Time

Total Iterations Random
Algorithm Iterations to Best Seed

SA 3 165.38 0.256272 1000 900 127
SA 5 166.3 0.25407 1000 900 254
SA 1 164.46 0.256863 1000 900 381
SA 9 168.14 0.254625 1000 900 508
SA 10 168.6 0.254332 1000 900 635
SA 4 166.04 0.256587 1000 982 762
SA 25 175.5 0.255208 1000 900 889
SA 1 164.46 0.255799 1000 900 1016
SA 3 165.38 0.256142 1000 900 1143
SA 3 165.38 0.256775 1000 900 1270
SA 4 166.04 0.258114 1000 949 1397
SA 6 166.76 0.255871 1000 900 1524
SA 10 168.6 0.253049 1000 900 1651
SA 6 166.76 0.257539 1000 900 1778
SA 3 165.38 0.255536 1000 900 1905
SA 4 165.84 0.255442 1000 900 2032
SA 4 165.84 0.255993 1000 900 2159
SA 6 166.76 0.256277 1000 900 2286
SA 4 165.84 0.25792 1000 900 2413
SA 5 166.3 0.256713 1000 900 2540
TS 0 164 53.5288 906962 5652 127
TS 0 164 53.5001 908102 5055 254
TS 0 164 53.4929 906968 8935 381
TS 0 164 53.6092 906231 8743 508
TS 0 164 53.4527 905885 4307 635
TS 0 164 53.4753 906996 12130 762
TS 0 164 53.553 907234 4651 889
TS 0 164 53.4876 906453 11048 1016
TS 0 164 53.4893 906399 8298 1143
TS 0 164 53.4947 905945 7232 1270
TS 0 164 53.4648 906374 6459 1397
TS 0 164 53.5758 907925 1787 1524
TS 0 164 53.4941 906586 12693 1651
TS 0 164 53.515 907498 5543 1778
TS 0 164 53.4877 906451 16380 1905
TS 0 164 53.4907 907319 9897 2032
TS 0 164 53.5148 908129 6527 2159
TS 0 164 53.4629 907386 9603 2286
TS 0 164 53.5973 909245 5614 2413
TS 0 164 53.4737 907118 13482 2540

107

Table C.19: Measured data for the 1000-node random virtual topology.

Search
Violations Score Time

Total Iterations Random
Algorithm Iterations to Best Seed

SA 6 184.76 0.302967 1000 1000 127
SA 15 188.9 0.303758 1000 1000 254
SA 16 189.36 0.303676 1000 1000 381
SA 13 187.98 0.304592 1000 1000 508
SA 5 184.3 0.303673 1000 1000 635
SA 1 182.46 0.304128 1000 1000 762
SA 8 185.68 0.302922 1000 1000 889
SA 11 187.06 0.302362 1000 1000 1016
SA 11 187.06 0.302157 1000 1000 1143
SA 5 184.3 0.305702 1000 1000 1270
SA 15 188.9 0.303079 1000 1000 1397
SA 4 183.84 0.30146 1000 1000 1524
SA 17 189.82 0.300889 1000 1000 1651
SA 11 187.06 0.30411 1000 1000 1778
SA 5 184.3 0.305911 1000 1000 1905
SA 13 187.98 0.303527 1000 1000 2032
SA 8 185.68 0.30444 1000 1000 2159
SA 9 186.14 0.301071 1000 1000 2286
SA 12 187.52 0.302551 1000 1000 2413
SA 7 185.22 0.303279 1000 1000 2540
TS 0 182 63.4574 1007772 16870 127
TS 0 182 63.4664 1006887 29270 254
TS 0 182 63.4442 1006677 7962 381
TS 0 182 63.5178 1007202 10875 508
TS 0 182 63.499 1008163 23218 635
TS 0 182 63.4164 1006280 8005 762
TS 0 182 63.2501 1005739 2789 889
TS 0 182 63.4171 1006763 9289 1016
TS 0 182 63.3544 1006811 13784 1143
TS 0 182 63.5395 1007456 21471 1270
TS 0 182 63.5005 1007743 5131 1397
TS 0 182 63.4579 1007489 11074 1524
TS 0 182 63.4897 1006693 10327 1651
TS 0 182 63.6402 1007825 19278 1778
TS 0 182 63.4258 1006531 10263 1905
TS 0 182 63.4993 1006803 5781 2032
TS 0 182 63.5371 1007535 17170 2159
TS 0 182 63.3478 1006518 28653 2286
TS 0 182 63.4114 1006397 11297 2413
TS 0 182 63.4076 1008267 13350 2540

108

Table C.20: Measured data for the 10-node scale-free virtual topology.

Search
Violations Score Time

Total Iterations Random
Algorithm Iterations to Best Seed

SA 0 3.78 1.40588 37000 8605 127
SA 0 3.78 1.14183 30000 5238 254
SA 0 3.78 1.42043 37000 6399 381
SA 0 3.78 1.04858 28000 3605 508
SA 0 3.78 1.61321 42000 5150 635
SA 0 3.28 1.11778 30000 17083 762
SA 0 3.78 1.32259 35000 5566 889
SA 0 3.78 1.36515 36000 5530 1016
SA 0 3.78 1.33308 36000 5666 1143
SA 0 3.78 1.31842 35000 4441 1270
SA 0 3.78 1.39767 37000 6089 1397
SA 0 3.78 1.36253 36000 8107 1524
SA 0 3.78 1.58718 42000 3680 1651
SA 0 3.78 1.16126 31000 8457 1778
SA 0 3.78 1.32347 35000 5353 1905
SA 0 3.78 1.38344 36000 7580 2032
SA 0 3.78 1.24381 33000 8048 2159
SA 0 3.78 1.24988 33000 8755 2286
SA 0 3.78 1.49776 39000 5442 2413
SA 0 3.78 1.32514 35000 7862 2540
TS 0 3.78 0.26538 11418 1035 127
TS 0 3.78 0.27916 11729 365 254
TS 0 4.28 0.255718 11351 960 381
TS 0 4.28 0.264208 11443 376 508
TS 0 4.48 0.26988 11689 913 635
TS 0 4.28 0.264067 11585 9641 762
TS 0 3.78 0.260931 11380 4230 889
TS 0 3.78 0.268701 11574 8468 1016
TS 0 4.28 0.263 11533 7768 1143
TS 0 4.28 0.265285 11745 2474 1270
TS 0 3.98 0.259769 11466 1231 1397
TS 0 4.48 0.276378 11446 1612 1524
TS 0 6.04 0.263257 11435 10459 1651
TS 0 3.98 0.264582 11647 9619 1778
TS 0 3.78 0.266402 11255 9729 1905
TS 0 3.78 0.266456 11352 1682 2032
TS 0 4.28 0.265807 11269 8164 2159
TS 0 4.28 0.263714 11494 6679 2286
TS 0 3.98 0.269749 11593 6457 2413
TS 0 3.78 0.275366 11883 2687 2540

109

Table C.21: Measured data for the 20-node scale-free virtual topology.

Search
Violations Score Time

Total Iterations Random
Algorithm Iterations to Best Seed

SA 0 6.48 1.88283 47000 14783 127
SA 0 6.48 1.65063 41000 15549 254
SA 0 6.48 1.5969 40000 14824 381
SA 0 6.48 1.84905 46000 14261 508
SA 0 5.98 1.86693 46000 12485 635
SA 0 5.98 1.51489 38000 24579 762
SA 0 6.48 2.03753 51000 13323 889
SA 0 6.48 2.0866 52000 13320 1016
SA 0 6.48 1.46173 37000 13763 1143
SA 0 6.48 1.7856 44000 13420 1270
SA 0 5.98 1.51262 38000 33598 1397
SA 0 6.18 1.9578 49000 28922 1524
SA 0 6.48 1.42469 36000 17644 1651
SA 0 5.98 1.61566 40000 22786 1778
SA 0 6.48 1.80081 45000 14687 1905
SA 0 6.48 1.50116 38000 15194 2032
SA 0 6.48 1.60988 41000 12978 2159
SA 0 6.48 1.61717 41000 12418 2286
SA 0 5.98 1.90029 47000 16155 2413
SA 0 6.18 1.49799 38000 29170 2540
TS 0 9.72 0.524453 21594 6383 127
TS 0 9.9 0.536233 22243 12122 254
TS 0 10.08 0.518159 21514 3108 381
TS 0 6.68 0.522259 21626 19584 508
TS 0 9.32 0.548484 22228 4881 635
TS 0 9.7 0.526793 21679 8389 762
TS 0 9.7 0.524514 21502 20587 889
TS 0 8.94 0.521549 21512 10375 1016
TS 0 10.28 0.522781 21466 2086 1143
TS 0 8.94 0.523677 21686 18651 1270
TS 0 8.94 0.520772 21675 6304 1397
TS 0 10.9 0.538178 22130 22102 1524
TS 0 9.12 0.524878 21585 13386 1651
TS 0 6.68 0.536687 22059 22030 1778
TS 0 10.46 0.520909 21454 20271 1905
TS 0 10.46 0.541462 22214 16523 2032
TS 0 10.58 0.531712 21779 4642 2159
TS 0 10.9 0.524045 21779 1190 2286
TS 0 6.88 0.530925 21783 7370 2413
TS 0 10.28 0.527689 21740 14598 2540

110

Table C.22: Measured data for the 30-node scale-free virtual topology.

Search
Violations Score Time

Total Iterations Random
Algorithm Iterations to Best Seed

SA 0 11.7 0.588505 21000 13832 127
SA 0 8.48 0.61856 18000 16279 254
SA 0 22.26 0.370239 17000 6423 381
SA 0 20.72 0.429969 19000 7716 508
SA 0 14.14 0.540104 17000 14975 635
SA 0 8.48 0.852883 29000 17904 762
SA 0 15.62 0.525677 17000 14925 889
SA 0 8.48 0.965421 28000 21771 1016
SA 0 15.56 0.503705 19000 17420 1143
SA 0 8.48 1.09187 36000 23499 1270
SA 0 15.68 0.552267 17000 8361 1397
SA 0 8.48 0.75025 25000 16145 1524
SA 0 15.98 0.461074 17000 10644 1651
SA 0 11.88 0.552655 19000 12291 1778
SA 0 8.28 0.706546 21000 18588 1905
SA 0 8.48 0.683239 23000 14622 2032
SA 0 19.84 0.503492 17000 7470 2159
SA 0 8.48 0.744015 22000 17680 2286
SA 0 19.2 0.495956 19000 10648 2413
SA 0 17.82 0.466762 17000 8607 2540
TS 0 16.36 0.787928 31814 4444 127
TS 0 16.56 0.747613 31890 25805 254
TS 0 16.36 0.782099 31986 29915 381
TS 0 12.96 0.708411 31926 23843 508
TS 0 17.32 0.759936 31927 30871 635
TS 0 15.44 0.782952 31921 21740 762
TS 0 15.42 0.772752 32013 25884 889
TS 0 15.22 0.803539 31925 9633 1016
TS 0 13.64 0.773243 32220 5736 1143
TS 0 16.3 0.789924 31961 21798 1270
TS 0 18.08 0.733487 32305 11866 1397
TS 0 15.56 0.776776 32069 30019 1524
TS 0 17.06 0.738385 31664 28606 1651
TS 0 11.7 0.723613 31756 22654 1778
TS 0 16.18 0.731286 31978 25803 1905
TS 0 16.56 0.788602 31938 30922 2032
TS 0 17.06 0.753653 31822 25739 2159
TS 0 10.74 0.783503 32368 12118 2286
TS 0 19.08 0.775243 31751 4427 2413
TS 0 12.5 0.738419 31869 29759 2540

111

Table C.23: Measured data for the 40-node scale-free virtual topology.

Search
Violations Score Time

Total Iterations Random
Algorithm Iterations to Best Seed

SA 0 10.08 1.40472 35000 20819 127
SA 0 10.08 1.40108 35000 22194 254
SA 0 10.08 1.37056 34000 24045 381
SA 0 10.08 1.65836 42000 17898 508
SA 0 10.08 1.56357 39000 27086 635
SA 0 10.08 1.60305 40000 22762 762
SA 0 10.08 1.56073 39000 19075 889
SA 0 10.08 1.35124 34000 27468 1016
SA 0 10.08 1.37771 35000 21222 1143
SA 0 10.08 2.05633 50000 19063 1270
SA 0 10.08 1.4307 37000 27200 1397
SA 0 10.08 1.50085 37000 22275 1524
SA 0 10.08 1.50397 38000 21535 1651
SA 0 10.08 1.50003 37000 20614 1778
SA 0 10.08 1.81037 45000 26846 1905
SA 0 10.08 1.62775 40000 23820 2032
SA 0 10.08 1.22013 31000 19092 2159
SA 0 10.08 1.58326 40000 21907 2286
SA 0 10.08 1.71025 43000 26118 2413
SA 0 10.08 1.03567 27000 22207 2540
TS 0 21.92 1.11904 42318 20990 127
TS 0 20.7 1.11318 42081 24888 254
TS 0 19.04 1.10234 42119 31991 381
TS 0 18.36 1.1033 42281 42268 508
TS 0 24.56 1.09073 41765 32700 635
TS 0 21.08 1.09155 42052 26839 762
TS 0 18.94 1.0959 41879 26718 889
TS 0 18.8 1.1029 42423 38298 1016
TS 0 19.76 1.09343 42043 42004 1143
TS 0 17.42 1.10518 42385 26220 1270
TS 0 22.8 1.08746 41762 18509 1397
TS 0 18.98 1.09633 41872 39853 1524
TS 0 22.42 1.10216 42111 21803 1651
TS 0 19.24 1.09678 41805 18537 1778
TS 0 17.84 1.09124 41815 29622 1905
TS 0 19.36 1.10216 42128 36052 2032
TS 0 19.12 1.10986 42209 38152 2159
TS 0 20.8 1.10131 41944 33833 2286
TS 0 18.16 1.09171 41880 41839 2413
TS 0 21 1.1154 42558 24226 2540

112

Table C.24: Measured data for the 50-node scale-free virtual topology.

Search
Violations Score Time

Total Iterations Random
Algorithm Iterations to Best Seed

SA 1 27.06 0.522652 17000 14826 127
SA 1 29.2 0.54723 17000 12289 254
SA 0 26.48 0.546879 17000 15779 381
SA 0 42.24 0.520343 17000 7905 508
SA 0 21.6 1.23594 40000 34556 635
SA 2 34.84 0.323601 17000 8496 762
SA 0 21.1 0.639378 19000 15635 889
SA 1 33.18 0.549402 20000 7315 1016
SA 0 40.3 0.488465 17000 7834 1143
SA 0 28.1 0.808628 25000 11143 1270
SA 0 30.86 0.643045 20000 17937 1397
SA 1 33.24 0.424706 17000 7851 1524
SA 0 24.22 0.693397 21000 19474 1651
SA 0 33.14 0.516222 17000 13685 1778
SA 1 27.26 0.504011 17000 10964 1905
SA 1 37.16 0.435947 17000 5641 2032
SA 1 29.78 0.481167 17000 11369 2159
SA 1 31.76 0.474848 17000 10169 2286
SA 0 33.88 0.58892 17000 11509 2413
SA 1 24.44 0.534299 18000 14401 2540
TS 0 27.88 1.18124 52014 50970 127
TS 0 30.16 1.20146 52615 35455 254
TS 0 27.94 1.17712 52208 20871 381
TS 0 23.58 1.17768 51898 48854 508
TS 0 27.84 1.18587 52155 20789 635
TS 0 29.52 1.16216 52414 52372 762
TS 0 26.34 1.16834 51869 44761 889
TS 0 25.84 1.17249 52449 52408 1016
TS 0 27 1.18588 52597 34447 1143
TS 0 27.98 1.17356 52254 44160 1270
TS 0 25.98 1.19156 52272 25945 1397
TS 0 29.92 1.1912 52070 51023 1524
TS 0 30.62 1.2084 52969 24711 1651
TS 0 30.74 1.19156 51949 50935 1778
TS 0 28.14 1.15119 52275 52267 1905
TS 0 23.58 1.1872 52038 50986 2032
TS 0 24.58 1.15444 52357 46261 2159
TS 0 29.66 1.18928 52146 41069 2286
TS 0 27.2 1.09357 52417 50406 2413
TS 0 25.34 1.15614 52073 51014 2540

113

Table C.25: Measured data for the 60-node scale-free virtual topology.

Search
Violations Score Time

Total Iterations Random
Algorithm Iterations to Best Seed

SA 1 41.4 0.568395 17000 10582 127
SA 1 41.86 0.543341 18000 14364 254
SA 1 31.26 0.946329 31000 19878 381
SA 2 36.28 0.551191 20000 18169 508
SA 1 24.86 0.613986 19000 17645 635
SA 2 45.08 0.434839 17000 9839 762
SA 2 38.82 0.517031 17000 11974 889
SA 0 35.38 0.551866 17000 13413 1016
SA 1 49.76 0.582756 17000 8085 1143
SA 2 47.2 0.439305 17000 8403 1270
SA 3 38.84 0.450124 17000 7622 1397
SA 3 37 0.556012 19000 14058 1524
SA 2 41.06 0.556254 19000 12613 1651
SA 2 33.16 0.508718 17000 11230 1778
SA 2 40.96 0.504783 17000 3119 1905
SA 2 28.38 0.644516 21000 17537 2032
SA 1 32.04 0.548834 18000 16279 2159
SA 2 45.42 0.513017 17000 5397 2286
SA 0 27.28 0.743748 23000 21641 2413
SA 1 33.24 1.02356 34000 22921 2540
TS 0 37.04 1.35586 62214 27816 127
TS 0 36.82 1.34593 61784 45595 254
TS 0 36.32 1.3567 62673 17209 381
TS 0 35.62 1.35031 62192 56160 508
TS 0 30.4 1.37816 62275 62222 635
TS 0 42.74 1.25654 62417 62369 762
TS 0 34.84 1.34626 61903 57823 889
TS 0 33.42 1.33401 62335 62283 1016
TS 0 37.48 1.37024 62201 55141 1143
TS 0 41.96 1.32666 61821 51804 1270
TS 0 38.98 1.31587 62334 58265 1397
TS 0 38.24 1.35883 62166 50071 1524
TS 0 35.24 1.36095 62386 59296 1651
TS 0 39.18 1.38548 62888 43665 1778
TS 0 35.44 1.32062 62169 59109 1905
TS 0 33.42 1.33557 61982 51862 2032
TS 0 34.84 1.36258 62090 46970 2159
TS 0 34.44 1.30218 62430 60375 2286
TS 0 34.3 1.34827 62090 37949 2413
TS 0 40.2 1.30904 62088 39879 2540

114

Table C.26: Measured data for the 70-node scale-free virtual topology.

Search
Violations Score Time

Total Iterations Random
Algorithm Iterations to Best Seed

SA 3 45.6 0.497098 18000 8272 127
SA 3 41.76 0.519031 17000 12348 254
SA 4 36.2 0.635553 24000 20249 381
SA 3 39.26 0.473027 17000 13193 508
SA 2 50.22 0.486365 17000 3373 635
SA 1 44.9 0.501638 17000 10450 762
SA 2 37.06 0.520732 17000 14228 889
SA 3 37.56 0.533237 17000 11539 1016
SA 1 42.7 0.638813 20000 10409 1143
SA 3 36.06 0.555253 20000 11314 1270
SA 2 45.1 0.575484 21000 8679 1397
SA 2 46.84 0.50003 17000 8401 1524
SA 3 42.24 0.468757 17000 13537 1651
SA 1 41.4 0.644187 21000 12443 1778
SA 2 39.58 0.803749 27000 20414 1905
SA 2 32.2 0.702444 23000 17416 2032
SA 3 42.02 0.595761 22000 10379 2159
SA 2 43.46 0.585765 20000 14369 2286
SA 1 38.5 0.598356 19000 15195 2413
SA 3 37.86 0.479162 17000 13385 2540
TS 0 46.08 1.54361 72369 70304 127
TS 0 39.34 1.57681 72646 70576 254
TS 0 41.74 1.55142 72210 63168 381
TS 0 46.12 1.51279 72992 69940 508
TS 1 38.82 1.53314 72332 63214 635
TS 0 46.42 1.57858 72092 62052 762
TS 0 39.6 1.57274 72528 68490 889
TS 0 46.26 1.57332 72219 63149 1016
TS 0 41.14 1.55545 72532 66440 1143
TS 1 46.26 1.56891 72226 55080 1270
TS 0 40.48 1.57411 72341 72329 1397
TS 0 42.76 1.55832 71912 62779 1524
TS 1 40.64 1.54267 72351 62238 1651
TS 1 44.58 1.54797 72186 65111 1778
TS 1 40.72 1.55638 72100 70026 1905
TS 0 41.96 1.54319 72209 72164 2032
TS 0 46.84 1.56701 72290 57175 2159
TS 1 36.94 1.56821 72608 60442 2286
TS 0 38.32 1.57567 72531 67446 2413
TS 1 43.78 1.46738 73228 69167 2540

115

Table C.27: Measured data for the 80-node scale-free virtual topology.

Search
Violations Score Time

Total Iterations Random
Algorithm Iterations to Best Seed

SA 6 49.52 0.420093 17000 15056 127
SA 4 52.44 0.489444 18000 11460 254
SA 3 54.72 0.528759 17000 3714 381
SA 7 53.88 0.40347 17000 3222 508
SA 5 50.12 0.492151 18000 10388 635
SA 5 56.04 0.415085 18000 12974 762
SA 4 38.18 0.662515 24000 19977 889
SA 4 52.62 0.372253 17000 7060 1016
SA 5 56.64 0.469419 17000 8098 1143
SA 3 49.44 0.67288 23000 7452 1270
SA 4 48.5 0.769008 27000 24646 1397
SA 4 48.96 0.488941 17000 12338 1524
SA 5 57.14 0.381558 17000 4761 1651
SA 6 46.36 0.466277 17000 10404 1778
SA 3 47.48 0.58933 22000 17538 1905
SA 5 51.22 0.415467 17000 10857 2032
SA 5 52.26 0.496941 17000 5364 2159
SA 4 51.08 0.460168 19000 13986 2286
SA 4 48.54 0.457406 17000 7331 2413
SA 4 48.18 0.620873 25000 22607 2540
TS 1 47.68 1.70819 82661 77605 127
TS 1 54.3 1.725 82519 38047 254
TS 1 40.74 1.79482 82165 82091 381
TS 0 54.8 1.77081 82578 65341 508
TS 2 48.42 1.76839 82815 38305 635
TS 1 53.72 1.75585 82680 82678 762
TS 2 52.3 1.78074 82604 70551 889
TS 2 52.48 1.37517 83711 29405 1016
TS 2 52.16 1.77769 82416 56252 1143
TS 0 53.56 1.75559 82519 41149 1270
TS 1 46.96 1.77697 82463 67380 1397
TS 3 48.92 1.73381 82653 79563 1524
TS 2 50.34 1.63688 83992 77947 1651
TS 1 51.16 1.78583 82380 81349 1778
TS 0 51.86 1.79137 82156 67056 1905
TS 3 44.38 1.75445 82411 70243 2032
TS 1 57.72 1.66872 82675 77561 2159
TS 1 56.84 1.81485 83363 83330 2286
TS 1 42.98 1.74539 82194 67050 2413
TS 1 53.46 1.75513 82502 75396 2540

116

Table C.28: Measured data for the 90-node scale-free virtual topology.

Search
Violations Score Time

Total Iterations Random
Algorithm Iterations to Best Seed

SA 6 48.72 0.513016 18360 8110 127
SA 4 45 0.954106 31320 19411 254
SA 3 57.88 0.652337 22680 16239 381
SA 6 50.34 0.540788 18360 12978 508
SA 5 48.66 0.622175 20520 16570 635
SA 6 54.46 0.534492 18360 12003 762
SA 6 67.84 0.559594 18360 10831 889
SA 5 50.58 0.51954 18360 13216 1016
SA 6 56 0.6034 19440 15783 1143
SA 4 46.72 0.625533 20520 17330 1270
SA 3 63.8 0.506951 18360 5952 1397
SA 5 66.26 0.540455 18360 7786 1524
SA 4 54 0.978641 31320 19559 1651
SA 1 60.24 0.674061 21600 14876 1778
SA 3 52.1 0.663737 20520 17413 1905
SA 7 52.86 0.755831 28080 18445 2032
SA 6 60.22 0.5403 18360 10612 2159
SA 6 52.84 0.529508 18360 12284 2286
SA 6 59.1 0.564967 18360 13642 2413
SA 2 46.54 0.800372 25920 24483 2540
TS 0 53.82 2.10835 99616 94174 127
TS 0 59.84 2.1941 99470 98398 254
TS 0 56.42 2.13305 99567 88677 381
TS 3 54.86 2.09089 100641 80950 508
TS 1 50.52 2.09752 99745 95380 635
TS 0 51.08 2.16547 99524 96252 762
TS 3 57.74 2.10029 99327 9931 889
TS 0 47.26 2.1665 99717 81167 1016
TS 0 54.36 2.11994 99592 97430 1143
TS 1 54.36 2.15804 99711 92076 1270
TS 0 51.86 2.18963 99863 99847 1397
TS 0 52.2 2.22353 99982 98885 1524
TS 0 59.4 2.15442 99419 95067 1651
TS 0 54.3 2.1916 99668 97485 1778
TS 0 58.56 2.16382 100140 97974 1905
TS 1 52.72 2.12238 100098 96804 2032
TS 1 50.42 2.12168 99644 99619 2159
TS 2 59.08 2.12974 99727 95364 2286
TS 0 52.52 2.14279 99457 74421 2413
TS 4 51.06 2.04208 99742 98553 2540

117

Table C.29: Measured data for the 100-node scale-free virtual topology.

Search
Violations Score Time

Total Iterations Random
Algorithm Iterations to Best Seed

SA 6 67.3 0.611924 20400 8207 127
SA 7 61.5 0.665526 24000 20644 254
SA 7 58.96 0.567272 21600 16979 381
SA 6 63.68 0.554089 20400 12051 508
SA 5 61.26 0.666372 22800 14868 635
SA 7 55.66 0.688471 24000 21496 762
SA 5 59.56 0.617178 20400 17066 889
SA 8 57.02 0.731403 25200 20525 1016
SA 8 60.06 0.631834 20400 13957 1143
SA 8 70.08 0.577854 20400 6770 1270
SA 7 69.98 0.888834 31200 16061 1397
SA 4 62.38 0.780139 27600 16249 1524
SA 7 51.04 1.02937 33600 31289 1651
SA 5 61.76 0.741565 25200 19894 1778
SA 5 59.98 0.582623 20400 12343 1905
SA 6 68.3 0.489472 20400 11254 2032
SA 8 63.02 0.612059 20400 8400 2159
SA 6 64.48 0.690803 22800 13799 2286
SA 5 59.06 0.728831 26400 17226 2413
SA 7 74.96 0.616096 20400 5101 2540
TS 0 61.68 2.74261 122816 114399 127
TS 1 62.26 2.70789 122339 119908 254
TS 1 61.4 2.58797 122856 120387 381
TS 1 52.06 2.71086 123113 112225 508
TS 2 50.3 2.62717 123153 72348 635
TS 1 55.8 2.62938 123160 114706 762
TS 0 60.14 2.71259 122703 117810 889
TS 0 53.16 2.66097 122545 121281 1016
TS 0 54.98 2.68444 122705 119074 1143
TS 2 66.86 2.58262 122727 99844 1270
TS 3 55.48 2.69744 122814 117964 1397
TS 0 62.9 2.7349 122622 99684 1524
TS 1 60.7 2.57555 122471 48839 1651
TS 0 61.36 2.69994 122854 109575 1778
TS 0 60.7 2.67553 122923 72311 1905
TS 2 59.72 2.58707 122741 121479 2032
TS 1 63.46 2.69013 122484 106812 2159
TS 3 59.82 2.74178 122697 115478 2286
TS 0 60.88 2.55702 122819 97471 2413
TS 0 59.76 2.61843 122805 102304 2540

118

Table C.30: Measured data for the 200-node scale-free virtual topology.

Search
Violations Score Time

Total Iterations Random
Algorithm Iterations to Best Seed

SA 7 40.7 0.057986 1000 200 127
SA 8 41.16 0.057906 1000 200 254
SA 6 40.44 0.056796 1000 398 381
SA 7 40.9 0.057653 1000 289 508
SA 8 41.36 0.058151 1000 561 635
SA 12 43.2 0.058373 1000 992 762
SA 10 42.28 0.057001 1000 223 889
SA 6 40.44 0.057125 1000 481 1016
SA 6 40.44 0.057929 1000 320 1143
SA 7 40.9 0.057978 1000 668 1270
SA 10 42.28 0.057854 1000 253 1397
SA 6 40.24 0.057908 1000 200 1524
SA 10 42.28 0.057371 1000 240 1651
SA 7 40.9 0.057589 1000 230 1778
SA 8 41.36 0.05798 1000 753 1905
SA 9 41.62 0.057268 1000 200 2032
SA 9 41.82 0.057854 1000 648 2159
SA 8 41.16 0.056916 1000 390 2286
SA 9 41.82 0.058078 1000 987 2413
SA 8 41.16 0.056065 1000 200 2540
TS 2 38.6 5.72312 204059 144649 127
TS 3 39.06 5.71764 204058 8564 254
TS 2 38.6 5.73765 205010 92678 381
TS 2 38.6 5.71108 204088 28919 508
TS 2 38.6 5.72768 205128 21311 635
TS 2 38.6 5.73368 205033 80678 762
TS 2 38.6 5.73654 204106 37847 889
TS 1 38.14 5.74624 204844 83677 1016
TS 2 38.6 5.70229 203589 70374 1143
TS 2 38.6 5.76727 204402 191369 1270
TS 2 38.6 5.69313 202781 84191 1397
TS 2 38.6 5.7775 204733 63577 1524
TS 2 38.6 5.6828 202958 103444 1651
TS 2 38.6 5.77476 205084 147032 1778
TS 2 38.6 5.74513 204805 9431 1905
TS 2 38.6 5.75108 205138 41619 2032
TS 3 38.86 5.75468 203773 125913 2159
TS 2 38.6 5.76359 205215 177314 2286
TS 2 38.6 5.74105 203898 10568 2413
TS 2 38.6 5.73618 203016 17421 2540

119

Table C.31: Measured data for the 300-node scale-free virtual topology.

Search
Violations Score Time

Total Iterations Random
Algorithm Iterations to Best Seed

SA 5 57.1 0.071714 1000 684 127
SA 10 59.4 0.071729 1000 909 254
SA 6 57.56 0.070662 1000 328 381
SA 4 56.64 0.07243 1000 581 508
SA 8 58.48 0.072385 1000 899 635
SA 9 58.74 0.070862 1000 300 762
SA 6 57.56 0.072275 1000 466 889
SA 3 56.18 0.071965 1000 649 1016
SA 11 59.86 0.07122 1000 800 1143
SA 4 56.44 0.071268 1000 300 1270
SA 5 57.1 0.071714 1000 478 1397
SA 4 56.64 0.071307 1000 905 1524
SA 6 57.56 0.073045 1000 835 1651
SA 4 56.64 0.073098 1000 696 1778
SA 14 61.24 0.070903 1000 679 1905
SA 9 58.94 0.071599 1000 532 2032
SA 6 57.36 0.07207 1000 300 2159
SA 7 57.82 0.070608 1000 369 2286
SA 13 60.78 0.072097 1000 980 2413
SA 6 57.56 0.071121 1000 307 2540
TS 0 54.8 10.1945 307079 3353 127
TS 0 54.8 10.139 304991 54570 254
TS 1 55.26 10.1748 306371 44746 381
TS 0 54.8 10.2134 307284 23856 508
TS 1 55.26 10.102 303167 18320 635
TS 0 54.8 10.1604 307238 9550 762
TS 1 55.26 10.1971 307341 24882 889
TS 1 55.26 10.1847 305331 18785 1016
TS 0 54.8 10.1227 304081 83788 1143
TS 1 55.26 10.1564 307086 109343 1270
TS 1 55.26 10.1817 306420 101254 1397
TS 0 54.8 10.2027 305199 86951 1524
TS 0 54.8 10.1815 306068 160912 1651
TS 1 55.26 10.1653 307047 69822 1778
TS 1 55.26 10.2066 306892 47500 1905
TS 0 54.8 10.1369 303875 246847 2032
TS 1 55.26 10.2088 306252 143482 2159
TS 1 55.26 10.1404 306783 26327 2286
TS 1 55.26 10.1415 305155 295794 2413
TS 1 55.26 10.0248 304267 46930 2540

120

Table C.32: Measured data for the 400-node scale-free virtual topology.

Search
Violations Score Time

Total Iterations Random
Algorithm Iterations to Best Seed

SA 27 84.3 0.085365 1000 469 127
SA 21 81.54 0.0897 1000 574 254
SA 18 79.96 0.087815 1000 400 381
SA 13 77.86 0.088121 1000 623 508
SA 14 78.32 0.094667 1000 438 635
SA 20 81.08 0.088723 1000 944 762
SA 15 78.78 0.087469 1000 540 889
SA 12 77.4 0.088364 1000 887 1016
SA 18 79.96 0.089366 1000 990 1143
SA 18 80.16 0.087504 1000 436 1270
SA 15 78.78 0.088011 1000 885 1397
SA 19 80.62 0.088566 1000 982 1524
SA 18 80.16 0.085486 1000 678 1651
SA 18 80.16 0.091757 1000 583 1778
SA 38 89.36 0.086983 1000 495 1905
SA 19 80.62 0.087379 1000 514 2032
SA 13 77.86 0.087268 1000 405 2159
SA 20 81.08 0.088346 1000 405 2286
SA 19 80.62 0.090379 1000 998 2413
SA 16 79.24 0.086838 1000 422 2540
TS 4 73.72 14.9618 406684 200504 127
TS 4 73.72 14.998 407827 297752 254
TS 6 74.64 15.1073 408585 37043 381
TS 4 73.72 14.9784 405077 390088 508
TS 6 74.64 15.0062 408672 189466 635
TS 4 73.72 14.9746 406850 229656 762
TS 5 74.18 14.8776 404737 83279 889
TS 5 74.18 15.0336 408020 299915 1016
TS 5 74.18 15.0147 407776 112404 1143
TS 5 74.18 14.9346 404364 213192 1270
TS 5 74.18 15.096 408829 57323 1397
TS 5 74.18 15.1133 408710 92260 1524
TS 5 74.18 15 407647 47180 1651
TS 4 73.72 15.072 407817 234647 1778
TS 5 74.18 15.1398 408726 176474 1905
TS 6 74.64 14.9162 406725 134452 2032
TS 4 73.72 15.0872 408750 116361 2159
TS 5 74.18 15.1005 408213 225025 2286
TS 4 73.72 15.0864 408960 386932 2413
TS 4 73.72 14.9418 405928 65498 2540

121

Table C.33: Measured data for the 500-node scale-free virtual topology.

Search
Violations Score Time

Total Iterations Random
Algorithm Iterations to Best Seed

SA 14 94.16 0.107073 1000 530 127
SA 14 94.16 0.108007 1000 712 254
SA 20 96.92 0.107421 1000 723 381
SA 23 98.3 0.107198 1000 829 508
SA 23 98.3 0.108 1000 649 635
SA 16 95.08 0.106049 1000 522 762
SA 35 103.62 0.106182 1000 500 889
SA 24 98.56 0.109655 1000 897 1016
SA 19 96.46 0.107887 1000 922 1143
SA 23 98.1 0.107043 1000 500 1270
SA 25 99.22 0.109658 1000 795 1397
SA 19 96.46 0.107713 1000 589 1524
SA 22 97.84 0.106441 1000 522 1651
SA 14 94.16 0.107931 1000 521 1778
SA 27 100.14 0.106386 1000 524 1905
SA 15 94.62 0.107295 1000 579 2032
SA 20 96.92 0.106198 1000 995 2159
SA 20 96.92 0.107951 1000 896 2286
SA 19 96.46 0.108255 1000 901 2413
SA 20 96.92 0.106058 1000 588 2540
TS 3 89.1 19.971 506669 488635 127
TS 2 88.64 20.1655 508665 371547 254
TS 4 89.36 19.9679 506259 176939 381
TS 3 89.1 20.1247 507767 406729 508
TS 3 89.1 20.0462 506592 264324 635
TS 4 89.56 20.0008 505011 114554 762
TS 3 89.1 19.9808 504386 179059 889
TS 4 89.36 20.1438 508776 294574 1016
TS 2 88.64 20.0072 507552 411490 1143
TS 3 88.9 20.0879 504704 450675 1270
TS 4 89.56 19.9235 506208 122816 1397
TS 3 89.1 20.0382 507828 367694 1524
TS 3 89.1 19.9563 507567 376425 1651
TS 3 89.1 20.038 506828 450768 1778
TS 2 88.64 19.9878 505290 233941 1905
TS 3 89.1 20.0676 507728 151303 2032
TS 3 89.1 20.0488 507156 413065 2159
TS 3 89.1 20.045 506819 277658 2286
TS 3 89.1 19.9986 504975 255724 2413
TS 3 89.1 20.0398 506422 191087 2540

122

Table C.34: Measured data for the 600-node scale-free virtual topology.

Search
Violations Score Time

Total Iterations Random
Algorithm Iterations to Best Seed

SA 19 113.26 0.133441 1000 771 127
SA 17 112.34 0.13641 1000 798 254
SA 8 108.2 0.132592 1000 808 381
SA 10 108.92 0.133616 1000 600 508
SA 19 113.26 0.133757 1000 991 635
SA 12 110.04 0.132746 1000 864 762
SA 15 111.22 0.133001 1000 600 889
SA 12 109.84 0.134011 1000 600 1016
SA 11 109.58 0.134054 1000 745 1143
SA 19 113.26 0.132764 1000 994 1270
SA 18 112.8 0.133008 1000 806 1397
SA 15 111.22 0.133649 1000 647 1524
SA 20 113.72 0.131982 1000 634 1651
SA 19 113.26 0.134514 1000 832 1778
SA 12 109.84 0.13295 1000 600 1905
SA 12 110.04 0.135335 1000 730 2032
SA 15 111.42 0.133213 1000 706 2159
SA 21 114.18 0.134622 1000 875 2286
SA 13 110.5 0.132144 1000 738 2413
SA 11 109.58 0.13456 1000 840 2540
TS 2 105.44 26.3692 609448 23644 127
TS 2 105.44 26.305 607522 15659 254
TS 1 104.98 26.2713 607067 115705 381
TS 0 104.52 26.275 606270 66549 508
TS 1 104.98 26.2948 608194 585173 635
TS 0 104.52 26.1788 605547 523533 762
TS 1 104.98 26.3057 606287 181905 889
TS 1 104.98 26.1431 605390 595421 1016
TS 0 104.52 26.3541 606992 430818 1143
TS 0 104.52 26.326 607417 334152 1270
TS 0 104.52 26.21 605505 478379 1397
TS 0 104.52 26.3316 610436 512409 1524
TS 2 105.44 26.2669 605041 118497 1651
TS 1 104.98 26.1699 605705 443548 1778
TS 1 104.98 26.3273 606865 353592 1905
TS 1 104.98 26.2546 606766 513695 2032
TS 0 104.52 26.3704 609524 492412 2159
TS 0 104.52 26.2911 606439 262168 2286
TS 2 105.44 26.1952 607394 260124 2413
TS 1 104.98 26.2416 605522 358397 2540

123

Table C.35: Measured data for the 700-node scale-free virtual topology.

Search
Violations Score Time

Total Iterations Random
Algorithm Iterations to Best Seed

SA 28 135.96 0.164922 1000 704 127
SA 40 141.48 0.16471 1000 904 254
SA 27 135.5 0.163599 1000 821 381
SA 42 142.4 0.161642 1000 972 508
SA 37 140.1 0.164278 1000 776 635
SA 30 136.88 0.16639 1000 917 762
SA 27 135.5 0.165944 1000 845 889
SA 28 135.96 0.166433 1000 930 1016
SA 22 133.2 0.167807 1000 787 1143
SA 22 133.2 0.165342 1000 744 1270
SA 35 139.18 0.165069 1000 807 1397
SA 17 130.7 0.167739 1000 858 1524
SA 36 139.44 0.164228 1000 742 1651
SA 31 137.14 0.167513 1000 700 1778
SA 21 132.74 0.164901 1000 859 1905
SA 35 139.18 0.164886 1000 758 2032
SA 38 140.36 0.165678 1000 984 2159
SA 42 142.4 0.162082 1000 957 2286
SA 34 138.72 0.166328 1000 850 2413
SA 26 134.84 0.16497 1000 700 2540
TS 1 123.54 33.6259 706117 439853 127
TS 4 124.92 33.7103 706645 220181 254
TS 4 124.92 33.5836 707854 582767 381
TS 4 124.92 33.759 710245 496021 508
TS 2 124 33.7591 708124 240650 635
TS 1 123.54 33.7774 709647 693702 762
TS 3 124.46 33.6124 706035 464842 889
TS 4 124.92 33.5691 707167 230626 1016
TS 4 124.92 33.5806 706659 183044 1143
TS 3 124.46 33.6454 707762 134071 1270
TS 1 123.54 33.6609 704864 656884 1397
TS 5 125.38 33.5367 705253 685253 1524
TS 4 124.92 33.6448 708870 413634 1651
TS 2 124 33.6771 706854 562728 1778
TS 1 123.54 33.6831 707637 292258 1905
TS 3 124.46 33.615 706603 403480 2032
TS 3 124.46 33.7644 707289 183687 2159
TS 3 124.46 33.5978 706145 366822 2286
TS 2 124 33.6102 706368 282006 2413
TS 2 124 33.6444 708052 450855 2540

124

Table C.36: Measured data for the 800-node scale-free virtual topology.

Search
Violations Score Time

Total Iterations Random
Algorithm Iterations to Best Seed

SA 39 156.54 0.190656 1000 919 127
SA 25 149.9 0.194599 1000 800 254
SA 28 151.28 0.196408 1000 800 381
SA 31 152.86 0.194562 1000 898 508
SA 27 151.02 0.194641 1000 826 635
SA 21 148.06 0.196925 1000 800 762
SA 21 148.26 0.198724 1000 939 889
SA 22 148.72 0.194735 1000 947 1016
SA 35 154.7 0.195318 1000 993 1143
SA 35 154.7 0.198705 1000 943 1270
SA 28 151.28 0.197155 1000 800 1397
SA 23 149.18 0.195717 1000 928 1524
SA 26 150.56 0.197065 1000 941 1651
SA 43 158.38 0.195542 1000 815 1778
SA 15 145.3 0.193735 1000 800 1905
SA 18 146.88 0.197165 1000 870 2032
SA 19 147.34 0.197419 1000 847 2159
SA 48 160.68 0.190136 1000 846 2286
SA 23 149.18 0.19772 1000 808 2413
SA 24 149.64 0.196298 1000 837 2540
TS 0 138.6 40.5585 807017 640893 127
TS 1 139.06 40.4271 807098 164503 254
TS 0 138.6 40.4849 806671 789729 381
TS 0 138.6 40.43 805762 388539 508
TS 1 138.86 40.2601 804562 762545 635
TS 0 138.4 40.456 807043 319596 762
TS 0 138.6 40.5264 808175 557916 889
TS 0 138.4 40.5223 809357 465029 1016
TS 1 138.86 40.4962 807051 534832 1143
TS 0 138.4 40.468 807684 363224 1270
TS 0 138.6 40.4735 809587 746563 1397
TS 0 138.6 40.4477 805334 447978 1524
TS 0 138.6 40.5848 807328 466014 1651
TS 1 138.86 40.4037 806224 656110 1778
TS 0 138.4 40.4512 806374 706308 1905
TS 1 139.06 40.4062 806691 115977 2032
TS 0 138.6 40.3669 806153 786283 2159
TS 1 139.06 40.4225 805764 184176 2286
TS 1 139.06 40.5068 806464 344986 2413
TS 0 138.6 40.6198 808639 183995 2540

125

Table C.37: Measured data for the 900-node scale-free virtual topology.

Search
Violations Score Time

Total Iterations Random
Algorithm Iterations to Best Seed

SA 41 173.94 0.229077 1000 955 127
SA 30 168.68 0.231913 1000 900 254
SA 24 165.92 0.232653 1000 900 381
SA 47 176.5 0.230813 1000 900 508
SA 40 173.48 0.230753 1000 904 635
SA 19 163.62 0.232793 1000 900 762
SA 44 175.32 0.232491 1000 936 889
SA 29 168.42 0.230677 1000 922 1016
SA 11 159.94 0.233863 1000 900 1143
SA 40 173.48 0.234312 1000 975 1270
SA 37 172.1 0.232686 1000 988 1397
SA 44 175.12 0.229167 1000 900 1524
SA 36 171.44 0.226848 1000 900 1651
SA 43 174.66 0.233356 1000 900 1778
SA 29 168.22 0.232517 1000 900 1905
SA 32 169.6 0.227636 1000 900 2032
SA 33 170.06 0.230073 1000 900 2159
SA 30 168.88 0.229578 1000 986 2286
SA 59 182.02 0.23298 1000 900 2413
SA 24 166.12 0.233371 1000 967 2540
TS 3 156.46 48.2428 909109 420685 127
TS 2 156 48.2593 907201 506861 254
TS 3 156.46 48.413 908280 483879 381
TS 1 155.54 48.377 906913 658674 508
TS 2 155.8 48.2886 905660 382212 635
TS 1 155.54 48.4007 907219 770154 762
TS 1 155.54 48.2869 906946 323362 889
TS 3 156.46 48.4013 909224 421763 1016
TS 2 156 48.3814 907424 558078 1143
TS 0 155.08 48.3772 907501 650243 1270
TS 2 156 48.4747 909574 396079 1397
TS 2 156 48.2974 907594 459146 1524
TS 1 155.54 48.2819 907172 525825 1651
TS 3 156.46 48.2828 906703 523338 1778
TS 2 156 48.3148 907260 409783 1905
TS 1 155.54 48.3515 905371 342795 2032
TS 1 155.54 48.317 906834 293223 2159
TS 1 155.54 48.2878 907840 648605 2286
TS 0 155.08 48.3519 907206 735020 2413
TS 2 156 48.4663 908933 295338 2540

126

Table C.38: Measured data for the 1000-node scale-free virtual topology.

Search
Violations Score Time

Total Iterations Random
Algorithm Iterations to Best Seed

SA 26 184.6 0.278927 1000 1000 127
SA 47 194.26 0.275766 1000 1000 254
SA 37 189.66 0.278949 1000 1000 381
SA 50 195.64 0.27478 1000 1000 508
SA 45 193.34 0.278408 1000 1000 635
SA 35 188.74 0.276473 1000 1000 762
SA 27 185.06 0.275374 1000 1000 889
SA 34 188.28 0.278871 1000 1000 1016
SA 38 190.12 0.27748 1000 1000 1143
SA 43 192.42 0.274125 1000 1000 1270
SA 31 186.9 0.279192 1000 1000 1397
SA 30 186.44 0.273714 1000 1000 1524
SA 31 186.9 0.27356 1000 1000 1651
SA 56 198.4 0.279626 1000 1000 1778
SA 32 187.36 0.273459 1000 1000 1905
SA 59 199.78 0.269005 1000 1000 2032
SA 45 193.94 0.273826 1000 998 2159
SA 38 190.12 0.274202 1000 1000 2286
SA 31 186.9 0.276613 1000 1000 2413
SA 39 190.58 0.276491 1000 1000 2540
TS 1 173.3 58.1444 1008020 761827 127
TS 1 173.1 58.1174 1006467 863365 254
TS 0 172.84 58.0631 1006136 946120 381
TS 2 173.76 57.9998 1005046 658814 508
TS 0 172.84 58.1346 1007684 997658 635
TS 2 173.76 57.9416 1005815 294233 762
TS 1 173.3 58.0456 1006903 596540 889
TS 0 172.84 58.0119 1006824 446400 1016
TS 1 173.3 58.0682 1006666 631297 1143
TS 0 172.84 58.2383 1005888 950853 1270
TS 1 173.3 58.0249 1005736 791527 1397
TS 2 173.56 58.004 1005874 984888 1524
TS 0 172.84 58.0754 1006855 398285 1651
TS 0 172.84 58.1183 1006686 789474 1778
TS 0 172.84 58.1102 1005732 520249 1905
TS 4 174.68 58.1143 1007698 826512 2032
TS 0 172.84 58.0984 1008157 862007 2159
TS 0 172.64 58.1433 1006590 530101 2286
TS 2 173.56 58.0591 1005572 603274 2413
TS 1 173.3 57.9541 1005853 639522 2540

127

Bibliography

1. Albert, Reka, Hawoong Jeong, and Albert-Laszlo Barabasi. “Error and Attack
Tolerance of Complex Networks”. Nature, 406(6794):378–382, Jul 2000. URL
http://dx.doi.org/10.1038/35019019.

2. Baldwin, Rusty O. “Fundamentals of Performance Analysis and Experimental
Design”. CSCE 554 Course Lecture Slides, August 2006.

3. Barabasi, Albert-Laszlo and Reka Albert. “Emergence of Scaling in
Random Networks”. Science, 286(5439):509–512, Oct 1999. URL
http://arxiv.org/abs/cond-mat/9910332.

4. Barabasi, Albert-Laszlo and Eric Bonabeau. “Scale-free Networks”. Scientific
American, 288(5):60, May 2003.

5. Battiti, Robert and Alan Bertossi. “Greedy, Prohibition, and Reactive Heuristics
for Graph Partitioning”. IEEE Transactions on Computers, 48(4):361–385, April
1999.

6. Chen, Clement C. “Anatomy of Network-Centric Warfare”. Armed Forces
Communications and Electronics Association Signal Magazine, 57(12):47, August
2003.

7. Dekker, Anthony H. “Network Topology and Military Performance”. Proceedings
of MODSIM 2005 International Congress on Modelling and Simulation, 2174–
2180, December 2005. URL http://www.mssanz.org.au/modsim05/.

8. Dreo, Johann, Alain Petrowski, Patrick Siarry, and Eric Taillard. Metaheuristics
for Hard Optimization. Springer-Verlag Berlin Heidelburg, 2006.

9. Erdos, Pal and Alfred Renyi. “On the Evolution of Random Graphs”. Publications
of the Mathematical Institute of the Hungarian Academy of Sciences, 5:17–61,
1960.

10. Glover, Fred and Manuel Laguna. Tabu Search. Kluwer Academic Publishers,
1997.

11. Guruprasad, Shashikiran, Rob Ricci, and Jay Lepreau. “Integrated Network
Experimentation using Simulation and Emulation”. In Proceedings of TridentCom
2005, February 2005. URL http://www.emulab.net/pubs.php3.

12. Guruprasad, Shashikiran B. Issues in Integrated Network Experimentation Using
Simulation and Emulation. Master’s thesis, The University of Utah Graduate
School, August 2005.

13. Harris, Ryan. C.O.R.E. CyberOpeRations Emulator Getting Started Guide. Air
Force Institute of Technology, March 2006.

128

http://dx.doi.org/10.1038/35019019
http://arxiv.org/abs/cond-mat/9910332
http://www.mssanz.org.au/modsim05/
http://www.emulab.net/pubs.php3

14. Hibler, Mike, Robert Ricci, Leigh Stoller, Jonathon Duerig, Shashi Gu-
ruprasad, Tim Stack, Kirk Webb, and Jay Lepreau. Feedback-directed
Virtualization Techniques for Scalable Network Experimentation. Techni-
cal Note FTN-2004-02, University of Utah Flux Group, May 2004. URL
http://www.cs.utah.edu/flux/papers/virt-ftn2004-02-base.html.

15. Huffaker, Bradley, Evi Nemeth, and K Claffy. “Otter: A General-purpose Network
Visualization Tool”. In Proceedings of INET 1999. June 1999.

16. Jarvis, David A. A Methodology for Analyzing Complex Military Com-
mand and Control (C2) Networks. Technical report, Alidade Incorpo-
rated, 31 Bridge Street Newport, Rhode Island 02840, 2005. URL
http://www.alidade.net/recent_research/.

17. Karypis, George and Vipin Kumar. “A Fast and High Quality Multilevel Scheme
for Partitioning Irregular Graphs”. SIAM Journal on Scientific Computing,
20(1):359–392, 1998. URL http://link.aip.org/link/?SCE/20/359/1.

18. Li, Lun, David Alderson, Reiko Tanaka, John C. Doyle, and Walter Willinger.
Towards a Theory of Scale-Free Graphs: Definition, Properties, and Implications.
Technical Report CIT-CDS-04-006, California Institute of Technology, Pasadena,
CA, USA, Oct 2005.

19. Medina, Alberto, Anukool Lakhina, Ibrahim Matta, and John By-
ers. BRITE: Universal Topology Generation from a User’s Perspec-
tive. Technical Report 2001-003, Boston University, 1 2001. URL
citeseer.ist.psu.edu/medina01brite.html.

20. Nurminen, Jukka K. Models and Algorithms for Network Planning Tools - Prac-
tical Experiences. Technical report, Helsinki University of Technology, May 2003.
URL http://lib.hut.fi/Diss/2003/isbn9512265745/article6.pdf.

21. Pakstas, Algirdas and Muhammad Azizur Rahman. “Incompatibiliy of Network
Design and Simulation Tools and an Approach to Integration”. Proceedings of the
6th EPSRC Annual Postgraduate Symposium on the Convergence of Telecommu-
nications, Networking and Broadcasting (EPSRC PGNet 2005), 529–535. Liver-
pool John Moores University, Liverpool, England, June 2005.

22. Pawlikowski, Krzysztof, Hae-Duck Joshua Jeong, and Jong-Suk Ruth Lee. “On
Credibility of Simulation Studies of Telecommunication Networks”. IEEE Com-
munications Magazine, 40(1):132–139, Jan 2002.

23. Rahman, Md Azizur, Algirdas Pakstas, and Frank Zhigang Wang. “An Approach
to Integration of Network Design and Simulation Tools”. Proceedings of the 8th
International Conference on Telecommunications (ConTEL 2005), volume 1, 173–
180. June 2005.

24. Ricci, Robert, Chris Alfeld, and Jay Lepreau. “A Solver for the
Network Testbed Mapping Problem”. SIGCOMM Computer Commu-

129

http://www.cs.utah.edu/flux/papers/virt-ftn2004-02-base.html
http://www.alidade.net/recent_research/
http://link.aip.org/link/?SCE/20/359/1
citeseer.ist.psu.edu/medina01brite.html
http://lib.hut.fi/Diss/2003/isbn9512265745/article6.pdf

nication Review, 33(2):65–81, April 2003. ISSN 0146-4833. URL
http://portal.acm.org/citation.cfm?id=956988.

25. Robertazzi, Thomas G. Computer Networks and Systems. New York: Springer-
Verlag, 3rd edition, 2000.

26. Silicon Graphics Computer Systems Incorporated. “Multimap”.
Standard Technical Library Entry, December 2006. URL
http://www.sgi.com/tech/stl/Multimap.html.

27. Silicon Graphics Computer Systems Incorporated. “Sorted Associative
Container”. Standard Technical Library Entry, December 2006. URL
http://www.sgi.com/tech/stl/SortedAssociativeContainer.html.

28. Strogatz, Steven H. “Exploring Complex Networks”. Nature, 410(6825):268–276,
March 2001. URL http://dx.doi.org/10.1038/35065725.

29. The University of Utah. “Emulab — Network Emulation Testbed Homepage”,
January 2007. URL http://www.emulab.net/.

30. The University of Utah and the Flux Group. “Assign about.txt”. Text File
Included With Emulab Environment Source Code, July 2002.

31. The University of Utah and the Flux Group. “Assign Readme”. Text File Included
With Emulab Environment Source Code, July 2002.

32. Wang, Xiao F. and Guanrong Chen. “Complex Networks: Small-
world, Scale-free and Beyond”. IEEE Circuits and Systems Mag-
azine, 3(1):6–20, First Quarter 2003. ISSN 1531-636X. URL
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1228503.

33. White, Brian, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Guruprasad, Mac
Newbold, Mike Hibler, Chad Barb, and Abhijeet Joglekar. “An Integrated Ex-
perimental Environment for Distributed Systems and Networks”. ACM SIGOPS
Operating Systems Review, 36(SI):255–270, 2002. ISSN 0163-5980.

34. Wikipedia. “Complex network — Wikipedia, The Free Encyclopedia”, 2006. URL
http://en.wikipedia.org/w/index.php?title=Complex_network.

35. Wikipedia. “Metaheuristic — Wikipedia, The Free Encyclopedia”, 2006. URL
http://en.wikipedia.org/w/index.php?title=Metaheuristic.

36. Wikipedia. “Scale-free network — Wikipedia, The Free Encyclopedia”, 2006.
URL http://en.wikipedia.org/w/index.php?title=Scale-free_network.

130

http://portal.acm.org/citation.cfm?id=956988
http://www.sgi.com/tech/stl/Multimap.html
http://www.sgi.com/tech/stl/SortedAssociativeContainer.html
http://dx.doi.org/10.1038/35065725
http://www.emulab.net/
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1228503
http://en.wikipedia.org/w/index.php?title=Complex_network
http://en.wikipedia.org/w/index.php?title=Metaheuristic
http://en.wikipedia.org/w/index.php?title=Scale-free_network

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

22–03–2007 Master’s Thesis Sept 2005 — Mar 2007

Use of Tabu Search in a Solver to Map
Complex Networks onto Emulab Testbeds

Jason E. MacDonald, Capt, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management
2950 Hobson Way
WPAFB OH 45433-7765

AFIT/GCE/ENG/07-07

Air Force Communication Agency/Dynamic Network Analysis Division
Mr. Scott Gardner
Scott AFB, IL 62225
DSN 779-6794
Commercial (618) 229-6794

AFCA/ENAN

Approval for public release; distribution is unlimited.

The University of Utah’s solver for the testbed mapping problem uses a simulated annealing metaheuristic algorithm to
map a researcher’s experimental network topology onto available testbed resources. This research uses tabu search to find
near-optimal physical topology solutions to user experiments consisting of scale-free complex networks. While simulated
annealing arrives at solutions almost exclusively by chance, tabu search incorporates the use of memory and other
techniques to guide the search towards good solutions. Both search algorithm are compared to determine whether tabu
search can produce equal or higher quality solutions than simulated annealing in a shorter amount of time. It is assumed
that all testbed resources remain available, and that hardware faults or another competing mapping process do not
remove testbed resources while either search algorithm is executing. The results show that tabu search produces a higher
proportion of valid solutions for 34 out of the 38 test networks than simulated annealing. For cases where a valid solution
was found, tabu search executes more quickly for scale-free networks and networks with less than 100 nodes.

testbed mapping problem, simulated annealing, tabu search, network emulation, emulation

U U U UU 144

Dr. Robert F. Mills (ENG)

(937) 255–3636 x4527, Robert.Mills@afit.edu

	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	I. Introduction
	1.1 Purpose and Goals
	1.2 Assumptions and Scope
	1.3 Organization

	II. Background
	2.1 Complex Networks
	2.1.1 Random Networks
	2.1.2 Small-World Networks
	2.1.3 Scale-Free Networks

	2.2 Emulation
	2.2.1 Growth of Network Simulation as a Research Tool
	2.2.2 Overview of Network Emulation
	2.2.3 University of Utah's Emulab

	2.3 Metaheuristic Algorithms
	2.3.1 Simulated Annealing
	2.3.2 Assign - Emulab's Solver to the Testbed Mapping Problem
	2.3.3 Improvements to Assign
	2.3.4 Tabu Search

	2.4 Summary

	III. Research Methodology
	3.1 Problem Definition
	3.1.1 Goals and Hypothesis
	3.1.2 Approach

	3.2 System Boundaries
	3.3 System Services
	3.4 Workload
	3.5 Performance Metrics
	3.6 Parameters
	3.6.1 System
	3.6.2 Workload

	3.7 Factors
	3.8 Evaluation Technique
	3.9 Experimental Design
	3.10 Implementation
	3.10.1 Original Anneal.cc using SA Search Algorithm
	3.10.2 Modified Anneal.cc using TS Search Algorithm

	3.11 Summary

	IV. Data Analysis
	4.1 Validation
	4.2 Vlink Multiplexing Issues
	4.3 Analysis of Valid Solutions
	4.4 Analysis of Execution Time and Solution Quality
	4.4.1 Analysis of Execution Time
	4.4.2 Analysis of Objective Function Score

	4.5 Summary

	V. Conclusions
	5.1 Research Summary and Conclusions
	5.2 Research Significance and Contributions
	5.3 Future Work

	Appendix A. Makefile Used to Compile Assign Source Code
	Appendix B. Virtual Topology and Testbed Resource Input Files
	B.1 Set of Available Testbed Resources (.ptop file)
	B.2 SF Virtual Topologies (.top files)

	Appendix C. Data
	Bibliography

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

